
. .

Cal Poly CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar
. .

Theory of Normal Forms
Functional Dependencies in Databases

Functional Dependencies

Functional dependencies allow identify redundancy in relational database
schemas.

A functional dependency (FD) on a relation R is a statement of
the form:

”If two tuples agree on all attributes A1, . . . , An then they

must also agree on all attributes B1, . . . , Bm.”

A functional dependency is formally denoted as

A1, . . . , An → B1, . . . , Bm

We also say ”A1, . . . , An functionally determine B1, . . . , Bm”.

Keys and Superkeys

Functional dependencies allow us to formalize the definition of a key in a rela-
tional table.

A set of one or more attrbiutes A1, . . . , An of relational table R is a
key of R if:

1. A1, . . . , An → B for all attributes B of R. (i.e., A1, . . . , An

functionally determine all attributes of R).

2. No proper subset of A1, . . . , An functionally determines all at-
tributes of R.

Informally: a key is a minimal collection of attributes which uniquely iden-
tifies all tuples in a relation. A relation can have multiple keys, but for two
different keys of the same relation, one cannot be a proper subest of the other.

A superkey of a relation R is any set of attributes that contains a
key.

1



Reasoning about Functional Dependencies

FD Equivalence. Two sets S and T of functional dependencies over some
relation R are equivalent if the set of all instances of R satisfying S is the

same as the set of all instances of R satisfying T .

FD Implication. A set of FDs S follows a set of FDs T over some relation
R if and instance of R that satisfies S also satisfies T .

Rules for Manipulating Functional Dependencies

1. Trivial FDs. Let R be a relation, and let {B1, . . . , Bm} ⊆ {A1, . . . , An}
be some of R’s attributes. Then the following FD always holds:

A1, . . . , An → B1, . . . Bm

2. Splitting/Combining Rule. Functional dependencies with multiple at-
tributes in right-hand side can be simplified:

A1, . . . , An → B1, . . . , Bm ≡ A1, . . . , An → B1, . . . , A1, . . . , An → Bm

Basically, it means, that we only need to be establishing functional depen-
dencies with a signle attribute on the right-hand side.

3. Trivial Dependency Rule. Let R be a relation. Let {B1, . . . , Bm} ⊆
{A1, . . . , An} and let {C1, . . . , Ck}∩{A1, . . . , An}. Then, the following FDs are
equivalent:

A1, . . . , An → B1, . . . Bm, C1, . . . , Ck ≡ A1, . . . , An → C1, . . . Ck

4. Transitive Rule. A1, . . . , An → B1, . . . Bm, B1, . . . , Bm → C1, . . . Ck =⇒
A1, . . . , An → C1, . . . Ck

Armstrong’s Axioms

Armstrong’s axioms are a complete system of FD derivation. Here complete
means that using Armstrong’s axioms, it is possible to derive from a collection
of FDs all FD that logically follow from them.

There are three axioms, two of which parallel the trivial dependency and tran-

sitivity rules listed above.

1. Reflexivity. Let R be a relation. Let {B1, . . . , Bm} ⊆ {A1, . . . , An} and
let {C1, . . . , Ck} ∩ {A1, . . . , An}. Then, the following FDs are equivalent:

A1, . . . , An → B1, . . . Bm, C1, . . . , Ck ≡ A1, . . . , An → C1, . . . Ck

2. Augmentation.

A1, . . . , An → B1, . . . Bm =⇒ A1, . . . , An, C1, . . . , Ck → B1, . . . Bm, C1, . . . , Ck,

for any C1, . . . , Cl.

3. Transitivity.

A1, . . . , An → B1, . . . Bm, B1, . . . , Bm → C1, . . . Ck =⇒ A1, . . . , An →
C1, . . . Ck

2



Algorithms For Functional Dependencies

Closure

Closure of a set of attributes. Let R be a relation, and Q = {A1, . . . , An}
be a subset of R’s attributes. The closure of Q, denoted Q+ is a set of attributes,
which are functionally determined by Q, given a set S of functional dependencies
on R.

FD Closure algorithm. The following algorithm computes the closure of a
set of attributes.

Algorithm FD-Closure(R Relational_Schema, Q Set_of_Attributes, S Set_of_FDs)

returns Set_of_Attributes;

// Step 1. split all rules in S

for each f in S

begin

if (right side of f has multiple attributes)

then replace f in S with FDs that have only on attribute on the right;

end;

// Step 2. Include set Q in the closure

X := Q;

// Step 3. Keep including new attributes for as long as FDs allow

repeat

X’ := X;

for each f: B1,...,Bn -> C in S

begin

if {B1,...,Bn} is a subset of X

then X := X union {C};

end;

until (X’ == X); // repeat until no new attributes can be added to X

return X;

3


