
. .

Cal Poly CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar
. .

Object-Oriented and Object-Relational Data Models

Object-Oriented Data Model

Overview

ODL — Object Definition Language.

Basic notions:

• Classes;

• Attributes;

• Relationships;

• Methods;

• Exceptions;

C/C++ -style syntax.

Complex type system.

ODL Syntax

Classes.

class <name> {

<list of properties>

}

Referencing a property:

<class>::<property>

Attributes.

Simplest of “properties”.

attribute <type description> <name>

1

Type descriptions can be simple (string, integer, enum) of complex (Struct,
List, Set).

Relationships.

Another type of “properties”. Established between different classes.

relationship <class description> <name>

Relationships are treated as references. Name is the name of the attribute for
storing the reference(s). Class description specifies the type of the reference
collection (single reference, set, list, etc. . .) and the name of the class to the
objects of which the references would point.

Inverse Relationships.

relationship <class description> <name>

inverse <class>::<relationship name>

Example 1 Descriptions of classes for the Library database.

class Book {

attribute string ID;

attribute integer ISBN;

attribute string Title;

relationship Set<Author> Authors

inverse Author::wrote;

relationship PubCompany publisher

inverse PubCompany::Books;

attribute integer year;

}

class Author {

attribute string Name;

attribute string Country;

relationship Set<Book> wrote

inverse Book::Authors;

}

class PubCompany {

attribute string Name;

attribute Struct

{ string street,

string city,

integer zip,

string country,

} Headquaters;

relationship Set<Book> Books

inverse Book::publisher;

}

Types of relationships.

Class A → Class B Class B → Class A Type of relationship

A → B B → A one-to-one

A → Set < B > B → A one-to-many

A → B B → Set < A > many-to-one

A → Set < B > B → Set < A > many-to-many

2

Methods

Third type of “properties”.

Signatures of methods, similar to C/C++ declarations.

<type> <Name> (<parameters>) [raises (<Exceptions>)]

• Parameters: in, out, inout.

• Exceptions:

Types

• Atomic (simple) types. integer, float, char,string boolean, enum.

• Class Names. E.g., Book is a type.

• Structured Types :

– Set ;

– Bag or multiset;

– List (position important);

– Array: Array<Type,i>.

– Dictionary: Dictionary<Type1,Type2>. Pairs of values are stored.
Type1 - key type, Type2 - range type.

– Structures.

Types can be embeddd into one another.

Array < List <Books>, 25>

Dictionary < Struct Addr (string street, string city, integer zip),

Author >

Types of Relationships:

• Class type;

• Single (use of a) collection type (set, list, bag, array, dictionary).

Multiway Relationships

Not supported.

Trick. Suppose R is a relationship between classes C1, . . . Cm. Define a new
class C and include many-to-one relationships between C and each of Cis in it.

This also allows to introduce descrptive attributes.

Subclasses and Inheritance

class <Name> extends <ClassName> { <extra properties>}

Multiple inheritance.

class <Name> extends <ClassName1>: <ClassName2>

{ <extra properties>}

Attribute inheritance may be undefined.

3

Extents

A extent of a class is the actual collection of objects with the type specified by
the class.

Extents have different names from classes and can be specified in class decla-
ration.

class Book (extent Library) {

...

}

Keys

ODL objects have unique identity (OIDs).

Keys are not necessary but may be convenient.

Keys are associated with extents !

Declaration of 1 key:

class <ClassName>

(extent <ExtentName> key (<AttributeNames>))

{

...

}

(Obviously, all attributes declared as part of a key must be defined in the
class).

Declaration of multiple keys:

class <ClassName>

(extent <ExtentName> key <AttributeNames>)

{

...

}

For example.

class Book

(extent Books key ISBN, LibCode)

{

...

}

declares two different keys, while

class Book

(extent Books key (ISBN, LibCode))

{

...

}

declares one key with two attributes.

4

Design Principles

Same as in E-R model.

1. Faithfulness. Follow the specifications.

2. Redundancy Avoidance. Unless necessary of explicitly desired, avoid in-
cluding redundant elements in the model.

3. Simplcity. Out of two competing designs, the simpler one is typically
better.

4. Relationship Selection.

Object-Relational Models

Compare and Constrast

Relational Databases Object Databases

• Simple Structure • Complex Structure
• Easy-to-query (SQL) • ??
• Modeling can be hard • Models complex domains naturally
• Commercially successful • Emerging

The Best of Both Worlds

Enter The Object-Relational Model.

What is Object-Relational Model ?

Relational Model+

• Structured Types for attributes;

• Methods;

• Tuple Identity;

• References.

Nested Relations

Allowing relational attributes have strucured types leads to nested relations.

• A atomic type (integer, real, boolean, character, string) can be a type of
an attribute in a relation.

• Let T1, . . . TM be attribute types and A1, . . . , AM be attribute names. Let
B be another attribute name. Then B : (A1 : T1, . . . , AM : TM) is a valid

object-relational attribute.

• Let B1, . . . BN be valid object-relational attributes of types (possibly com-
plex) T1, . . . , TN . Then (B1 : T1, . . . BN : TN) is a valid object-relational

schema.

References

Let T be a valid object-relational attribute type. Then (∗T) is a reference type

to objects of type T and {∗T } is a reference type to sets of objects of type T .

5

Methods

Any function associated with a particular object type (object-relational schema)
can be registered as a method and used in queries.

Tuple Identity

Each tuple gets a distinct OID. Tuples with same attributes no longer subject
to duplicate elimination.

Query Languages ???

Object-relational model is more complex. How do we query object-relational
data ?

• OQL (Object Query Language. OQL is a pure object-oriented query
language, but can be used for object-relational data.

• SQL Extension. SQL-99 supports creation of complex types (ADTs),
registration of methods, references, tuple identity, and extends query lan-
guage syntax.

Object-Relational Features of SQL-99

User Defined Types

SQL–99 allows for new types to be defined within a database. They are called
User Defined Types or UDTs. UDTs can then be used as

• Type designations of database tables;

• Type designations of database table attributes.

Defining UDTs

The Oracle version of the SQL type definition is:

CREATE [OR REPLACE] TYPE <name> AS OBJECT

(<declarations>);

/

Here, <name> is the identifier for the name of the UTD and <declarations>

is the list of standard attribute and new method declarations.

Note: In sqlplus each CREATE TYPE command must end with a / on a separate
line (semicolumn is not enough).

Attribute Declarations

Attribute declarations are same as in CREATE TABLE statement, except that
UTDs can be types of attributes.

CREATE TYPE interval AS OBJECT (

lower INTEGER,

upper INTEGER

);

/

6

CREATE TYPE paper_type AS OBJECT

(title CHAR(200),

year INTEGER,

pages interval

);

/

Collection Types: VARRAY

Oracle allows for a variable array type to represent collection types. A variable
array is an array of up to a specified number of components.

VARRAY can be used as the type of a table attribute.

Defining VARRAY types.

CREATE [OR REPLACE] TYPE <name> AS VARRAY(<n>) OF <datatype>

For example, the following statement defines a variable array type for storing
multiple papers:

CREATE TYPE paper_list_type AS VARRAY(20) OF paper_type

Inheritence

CREATE [OR REPLACE] TYPE <Name> UNDER <TypeName> (

...

);

/

Example:

CREATE TYPE Interval_plus_Center UNDER Interval (

Center Float

);

/

Creating Object-relational tables

Once a type has been created, relational tables of this type can be created as
well. The syntax is:

CREATE TABLE <name> OF <datatype>

(

<constraints>

);

/

For example,

CREATE TABLE Contents OF paper_type;

creates table Contents with three attributes specified by the paper type

type.

Primary keys, foreign keys and other constraints need to be specified:

7

CREATE TABLE Contents OF paper_type

(PRIMARY KEY(title));

UDTs can also be used directly as attribute types in ”traditional” CREATE

TABLE statements.

CREATE TABLE tech_report

(

Report_No varchar(20) primary key,

report_info paper_type,

report_date DATE

);

Inserting information into Object-relational tables

INSERT statement changes to accommodate for insertion of UDT values. An
instance of a UDT value is described by the following syntax:

<UDT>(<value1>,<value2>,...,<valueX>)

where X is the number of fields in the UDT, and the order of values matches
the order of fields in the CREATE TYPE <UDT> statement.

Similarly, an instance of a VARRAY is described using the syntax:

<VARRAY_TYPE>(<value1>,...,<valueX>)

where X is less than or equal to the size of the variable array.

Example. Inserting a value into the tech report table:

INSERT INTO tech_report VALUES(’TR-01-08’, paper_type(’JOXM’, 2008, interval(1,20)));

Notice that UTD instance descriptions can be nested.

Example. Inserting into a table with a VARRAY attribute.

Conisder the following table:

CREATE TABLE Journal_Issue

(Title varchar(50),

Volume INT,

No INT,

YEAR INT,

articles paper_list_type,

PRIMARY KEY(Title, Volume, No)

);

Here is an INSERT statement for this table:

INSERT INTO Journal_Issue

VALUES(’SIGMOD Record’, 10, 1, 2000,

paper_list_type(paper_type(’Databases are Great’, 2000, interval(1,10)),

paper_type(’Report of SIGMOD-1999’, 2000, interval(11,15),

paper_type(’Oracle’s Secrets’, 2000, interval(16,29))

)

);

8

Accessing the data

Note: Bad news: VARRAY attributes can be accessed only via PL/SQL. You
cannot ask ”Show me the second article in each issue” from within pure SQL.

Access structured values, however, is available from SQL. SQL uses ”.” nota-
tion to traverse the hierarchy of nested attributes.

SELECT t.report_info.title

FROM tech_report t

WHERE t.report_info.year = 2008;

This query outputs the titles of all tech reports written in 2008.

NOTE: in order to access nested attributes you must include an alias for
your table in the FROM clause.

9

