Cal Poly CPE/CSC 366: Database Modeling, Design and Implementation Alexander Dekhtyar.

Object-Oriented and Object-Relational Data Models

Object-Oriented Data Model

Overview

ODL — Object Definition Language.

Basic notions:

Classes;

Attributes;

e Relationships;

Methods;

Exceptions;
C/C++ -style syntax.
Complex type system.

ODL Syntax

Classes.

class <name> {
<list of properties>

}
Referencing a property:
<class>: :<property>

Attributes.

Simplest of “properties”.

attribute <type description> <name>

Type descriptions can be simple (string, integer, enum)of complex (Struct,
List, Set).

Relationships.
Another type of “properties”. Established between different classes.

relationship <class description> <name>

Relationships are treated as references. Name is the name of the attribute for
storing the reference(s). Class description specifies the type of the reference
collection (single reference, set, list, etc...) and the name of the class to the
objects of which the references would point.

Inverse Relationships.

relationship <class description> <name>
inverse <class>::<relationship name>

Example 1 Descriptions of classes for the Library database.

class Book {

attribute string ID;

attribute integer ISBN;

attribute string Title;

relationship Set<Author> Authors
inverse Author::wrote;

relationship PubCompany publisher
inverse PubCompany: :Books;

attribute integer year;

}

class Author {
attribute string Name;
attribute string Country;
relationship Set<Book> wrote
inverse Book::Authors;

}

class PubCompany {
attribute string Name;
attribute Struct
{ string street,
string city,
integer zip,
string country,
} Headquaters;
relationship Set<Book> Books
inverse Book::publisher;

Types of relationships.
Class A — Class B Class B — Class A | Type of relationship

A— B B— A one-to-one
A—Set< B> B— A one-to-many
A— B B —Set< A> many-to-one
A—Set< B> B —8et< A> many-to-many

Methods

Third type of “properties”.

Signatures of methods, similar to C/C++ declarations.

<type> <Name> (<parameters>) [raises (<Exceptions>)]

e Parameters: in, out, inout.

e Exceptions:

Types
e Atomic (simple) types. integer, float, char,string boolean, enum.
e Class Names. E.g., Book is a type.

o Structured Types:
— Set;

— Bag or multiset;

List (position important);

Array: Array<Type,i>.

— Dictionary: Dictionary<Typel,Type2>. Pairs of values are stored.
Typel - key type, Type2 - range type.

Structures.

Types can be embeddd into one another.
Array < List <Books>, 25>
Dictionary < Struct Addr (string street, string city, integer zip),
Author >

Types of Relationships:

e Class type;

e Single (use of a) collection type (set, list, bag, array, dictionary).
Multiway Relationships

Not supported.

Trick. Suppose R is a relationship between classes C1,...C,,. Define a new
class C' and include many-to-one relationships between C' and each of C;s in it.

This also allows to introduce descrptive attributes.

Subclasses and Inheritance
class <Name> extends <ClassName> { <extra properties>}
Multiple inheritance.

class <Name> extends <ClassNamel>: <ClassName2>
{ <extra properties>}

Attribute inheritance may be undefined.

Extents

A extent of a class is the actual collection of objects with the type specified by
the class.

Extents have different names from classes and can be specified in class decla-
ration.

class Book (extent Library) {

3

Keys

ODL objects have unique identity (OIDs).
Keys are not necessary but may be convenient.
Keys are associated with extents !

Declaration of 1 key:

class <ClassName>
(extent <ExtentName> key (<AttributeNames>))

{
X

(Obviously, all attributes declared as part of a key must be defined in the
class).

Declaration of multiple keys:

class <ClassName>
(extent <ExtentName> key <AttributeNames>)
{

}

For example.

class Book
(extent Books key ISBN, LibCode)
{

}

declares two different keys, while

class Book
(extent Books key (ISBN, LibCode))
{

}

declares one key with two attributes.

Design Principles
Same as in E-R model.

1. Faithfulness. Follow the specifications.

2. Redundancy Avoidance. Unless necessary of explicitly desired, avoid in-
cluding redundant elements in the model.

3. Simplcity. Out of two competing designs, the simpler one is typically
better.

4. Relationship Selection.

Object-Relational Models

Compare and Constrast

Relational Databases Object Databases

e Simple Structure e Complex Structure

e Easy-to-query (SQL) ° 77

e Modeling can be hard e Models complex domains naturally

e Commercially successful e Emerging

The Best of Both Worlds

Enter The Object-Relational Model.
What is Object-Relational Model ?
Relational Model+

e Structured Types for attributes;
e Methods;

e Tuple Identity;

e References.

Nested Relations

Allowing relational attributes have strucured types leads to nested relations.

e A atomic type (integer, real, boolean, character, string) can be a type of
an attribute in a relation.

e Let T7,...Ty be attribute types and Ay, ..., Ay be attribute names. Let
B be another attribute name. Then B : (A : T4, ..., Ay 2 Th) is a valid
object-relational attribute.

e Let By,... By be valid object-relational attributes of types (possibly com-
plex) Th,...,Tn. Then (By : Th,...By : Tn) is a valid object-relational
schema.

References

Let T be a valid object-relational attribute type. Then (xT') is a reference type
to objects of type T and {+T'} is a reference type to sets of objects of type T

Methods

Any function associated with a particular object type (object-relational schema)
can be registered as a method and used in queries.

Tuple Identity

Each tuple gets a distinct OID. Tuples with same attributes no longer subject
to duplicate elimination.

Query Languages 777

Object-relational model is more complex. How do we query object-relational
data ?

e OQL (Object Query Language. OQL is a pure object-oriented query
language, but can be used for object-relational data.

e SQL Extension. SQL-99 supports creation of complex types (ADTSs),
registration of methods, references, tuple identity, and extends query lan-
guage syntax.

Object-Relational Features of SQL-99

User Defined Types

SQL-99 allows for new types to be defined within a database. They are called
User Defined Types or UDTs. UDTs can then be used as

e Type designations of database tables;

e Type designations of database table attributes.

Defining UDTs

The Oracle version of the SQL type definition is:

CREATE [OR REPLACE] TYPE <name> AS OBJECT
(<declarations>);

Here, <name> is the identifier for the name of the UTD and <declarations>
is the list of standard attribute and new method declarations.

Note: In sqlplus each CREATE TYPE command must end with a / on a separate
line (semicolumn is not enough).

Attribute Declarations

Attribute declarations are same as in CREATE TABLE statement, except that
UTDs can be types of attributes.

CREATE TYPE interval AS OBJECT (
lower INTEGER,
upper INTEGER
);

CREATE TYPE paper_type AS OBJECT
(title CHAR(200),

year INTEGER,

pages interval

)3

Collection Types: VARRAY

Oracle allows for a variable array type to represent collection types. A variable
array is an array of up to a specified number of components.

VARRAY can be used as the type of a table attribute.

Defining VARRAY types.
CREATE [OR REPLACE] TYPE <name> AS VARRAY(<n>) OF <datatype>

For example, the following statement defines a variable array type for storing
multiple papers:

CREATE TYPE paper_list_type AS VARRAY(20) OF paper_type

Inheritence

CREATE [OR REPLACE] TYPE <Name> UNDER <TypeName> (

)3
/
Example:

CREATE TYPE Interval_plus_Center UNDER Interval (
Center Float
)3

Creating Object-relational tables

Once a type has been created, relational tables of this type can be created as
well. The syntax is:

CREATE TABLE <name> OF <datatype>
(

<constraints>
);
/

For example,
CREATE TABLE Contents OF paper_type;

creates table Contents with three attributes specified by the paper_type
type.

Primary keys, foreign keys and other constraints need to be specified:

CREATE TABLE Contents OF paper_type
(PRIMARY KEY(title));

UDTs can also be used directly as attribute types in "traditional” CREATE
TABLE statements.

CREATE TABLE tech_report

(

Report_No varchar(20) primary key,
report_info paper_type,
report_date DATE

)3

Inserting information into Object-relational tables

INSERT statement changes to accommodate for insertion of UDT values. An
instance of a UDT value is described by the following syntax:

<UDT>(<valuel>,<value2>,...,<valueX>)

where X is the number of fields in the UDT, and the order of values matches
the order of fields in the CREATE TYPE <UDT> statement.

Similarly, an instance of a VARRAY is described using the syntax:
<VARRAY_TYPE> (<valuel>,...,<valueX>)

where X is less than or equal to the size of the variable array.

Example. Inserting a value into the tech_report table:
INSERT INTO tech_report VALUES(’TR-01-08’, paper_type(’JOXM’, 2008, interval(1,20)));

Notice that UTD instance descriptions can be nested.

Example. Inserting into a table with a VARRAY attribute.
Conisder the following table:

CREATE TABLE Journal_Issue
(Title varchar(50),
Volume INT,
No INT,
YEAR INT,
articles paper_list_type,
PRIMARY KEY(Title, Volume, No)
);

Here is an INSERT statement for this table:

INSERT INTO Journal_Issue
VALUES (’SIGMOD Record’, 10, 1, 2000,
paper_list_type(paper_type(’Databases are Great’, 2000, interval(1,10)),
paper_type (’Report of SIGMOD-1999’, 2000, interval(11,15),
paper_type(’0Oracle’s Secrets’, 2000, interval(16,29))
)

Accessing the data

Note: Bad news: VARRAY attributes can be accessed only via PL/SQL. You
cannot ask ”Show me the second article in each issue” from within pure SQL.

7N

Access structured values, however, is available from SQL. SQL uses nota-

tion to traverse the hierarchy of nested attributes.

SELECT t.report_info.title
FROM tech_report t
WHERE t.report_info.year = 2008;

This query outputs the titles of all tech reports written in 2008.

NOTE: in order to access nested attributes you must include an alias for
your table in the FROM clause.

