
CSC 369: Distributed Computing 
Spring 2020 

 Lab 8-1 
Due: Wednesday, June 3, 10:00am 

 
 

This is an individual assignment. 
 
When executing it, please remember - you may make choices, as part of this              
assignment, that are different from mine, and result in a somewhat different result. This              
is OK. I am looking for you to understand the nature of Spark operations, and to utilize                 
them effectively. Your code will be examined and counted as correct even when the              
outputs do not quite match (as long as you did the right thing). 
 
It is ​vastly preferable ​for you to complete this assignment before Lab 8-2 is assigned               
on Wednesday, June 3 in lab. However, I will have the usual grace period for               
submissions to give you an opportunity to juggle multiple responsibilities. 

 
Spark For Text Analysis. 
 
We will be working with  the Project Guttenberg documents located in /data/Guttenberg 
directory on HDFS. 
 
We will use sc.​TextFile() in situations where we need to import individual documents. We              
also will use sc.WholeTextFiles(directoryPath) to read in the entire collection of           
documents. 
 
Information retrieval is a part of the overarching field of Knowledge Discovery in Data (which               
also contains Machine Learning/Data Mining as its constituent parts) that deals with analysis of              
textual documents and search for information in them. Information retrieval relies on two basic              
principles: ​vectorization ​and ​similarity computation ​to operate. 
 
Vectorization ​is a representation of textual documents as numeric vectors of different features.  
 
Similarity computations ​are computations that are interpreted as indicating how similar two            
vectorized representations of documents are to each other. 
 
In this lab we will incrementally build some Spark methodology for both vectorizing and              
computing similarities between different textual documents. The lab is set as a collection of              
challenges - you need to produce pySpark code to meet each challenge, and accomplishing it               



will provide a stepping stone for the next challenge. We will start by working on some of the                  
challenges together. The remaining challenges are for you to complete on your own. 
 
 
 
 
Step 1. Finding 100 most popular words in an individual document. 
 
This is a similar exercise to something you needed to do with MapReduce on Hadoop. It is so                  
on purpose. Let us first take some document from the Guttenberg collection (we can start with                 
"Alice in Wonderland", which is ​/data/Guttenberg/11-0.txt) 
 

Our first task is to find, for this document the top 100 most popular words. 
 
Path to solution. ​To accomplish this task, we decompose the problem a bit. The RDD provided                
to us by ​sc.textFile() ​contains individual lines in the document as individual RDD             
elements. First we need to break them into individual words. An example exists from our               
Wednesday, May 27 lab. After we have a list of words in the document, we can use standard                  
grouping and aggregation techniques. The output of this process needs to be an RDD that               
contains 100 most popular words in the document together with the raw counts for these words. 
 
 
 
Step 2. Not all words are created equal.  
 
One thing we will notice when we find top 100 most popular words in a single document is that a                    
lot of these words are not very interesting: they are articles, prepositions, verbs like "is" or "are",                 
or "does", and so on. Our interest in describing the documents is to find "meaningful" words that                 
are popular. 
 
For this we need to filter out the words that we consider to be stopwords. Let us assume that a                    
list of stopwords is a text document that contains one word per line, and is located in your home                   
directory under the filename ​stowords.txt ( ​you can build your own list of stopwords for this               
exercise, or "borrow" someone else's list). (For your convenience, I put a ​stopwords.txt ​file              
with over 400 stopwords in ​/data ​on HDFS. Please note, this file contains empty lines, your if                 
you are processing it, you would need to run a filter that removes those empty lines). 
 
Note: you may want to add some words like "guttenberg" to this list, although there is no need to                   
go overboard here. 
 
Write pySpark transformations that remove all words in the stopword list from consideration, and              
combine these transformations with your work on ​Step 1. to produce a list of "meaningful" 100                 
most popular words in a document. 



 
In addition to stopword removal, write functions for Spark transformations that perform some 
basic cleanup: 

● remove all non alphanumeric characters found in individual words (if they have not been 
removed on previous stages) 

● remove empty words ("") from the list of words (if they are still there) 
 
Organize your ​Step 1 ​and ​Step 2 ​code into a Python file ​top100.py​. ​In that file, create                 
function ​getTop100(filename) ​which is passed the filename of a file (assume a full HDFS              
path - this way, we can apply this function to a lot of different documents). and which returns                  
back an RDD containing top 100 "meaningful" words from the file with their frequencies. The               
program itself should find top 100 words for Alice in Wonderland, and print it.  
 
 
 
 
Step 3. Extend finding Top 100 meaningful words to the entire collection of documents. 
 
On this stage you will extend the code you developed on Steps 2 and 3 to find the top 100 
words of the entire Guttenberg collection (all 11 documents we have of it). 
 
You will use ​sc.wholeTextFiles(directoryPath) ​to create the initial RDD containing all 
the data in our Guttenberg text collection.  
 
After that, you will adapt the code you developed for Step 1 and Step 2 to produce an RDD                   
containing the list of top 100 most frequent "meaningful" words in the entire collection.  
 
Write a Python program ​frequentWords.py ​which both prints the top 100 most frequent             
words you found (together with their frequencies, and organized in descending order by             
frequency), ​and ​saves to HDFS (in your home or test directory) an RDD representing that data,                
but sorted in alphabetical order. You can save the document as a Pickle file, or in any other                   
format - as long as your programs below can adequately read it. 
 
Notes. One thing you will notice about the text in your RDD elements after               
sc.wholeTextFiles() ​is the explicit presence of ​"\r\n" ​combinations signifying the          
newlines. Make sure your transformations take them out (in some cases this can happen              
automatically, but there are also solutions where you may need to take care of these explicitly).  
 
 
Step 4. Simple Vectorization.  
 
Now, it is the turn of vectorization. A typical vector representation of a textual document uses                
individual words as features, and assigns each words a ​weight ​that corresponds to the              



importance of the word to the document. A very popular way to compute the word (term)                
weights is to combine two key characteristics of a given word: 

● term frequency (tf) - the frequency (i.e., how many times it appears) of a term in a                  
specific document 

● document frequency (df) - ​the number of documents in a document collection which             
contain at least one occurrence of the term. 

 
In practice for the weight of a term in a document to be high, we want ​term frequency to be ​high                     
(the term shows up frequently), and the ​document frequency ​to be ​low ​(the term is exclusive to                 
this particular document).  
 
We are going to assemble the term frequency vectors for each document in the collection for                
the top 100 most frequent overall terms. Notice that you already have most of the code to                 
compute the term frequency vectors from your solutions for Steps 1,2,3. We will             
resuse/repurpose this code here. 
 
We are also going to construct a vector of document frequencies of each of the top 100 terms. 
 
Notes. To construct the document frequency vector, let's remember ​inverted indexes. ​When             
you initially read your Guttenberg collection using ​sc.wholeTextFiles() ​the data          
represents a direct index - each element in the resulting RDD has the file name (full HDFS path                  
to it) as the key, and individual words as values. An inverted index will use individual words as                  
keys, and for each word - it will index the documents it appears in. Eventually we need just one                   
entry per Guttenberg text file in the inverted index for each word (an analog of MongoDB's                
addToSet() ​aggregation). 
 
A few RDD transformations may prove useful. Using ​flatMapValues() and ​mapValues()           

instead of ​flatMap() ​and ​map() ​respectively keeps the keys (e.g., the file names) intact              
during the process of cleaning. You can use already prepared (and pickled - it is actually the                 
easiest way to store it) list of top 100 words to filter out all other words (generally speaking                  
intersection and join operations may be useful, depending on the path you take). Finally, you               
can use ​distinct() ​to eliminate duplicates in the most opportune moment. 
 
Let us write two programs. The first program, ​df.py​, constructs and saves to HDFS an RDD                
containing the document frequencies of the words from the top100 list. 
 
The second program, ​tf.py ​constructs and saves 11 RDDs containing term frequencies for             
each of the 11 Guttenberg documents. You can hard-code the names and locations of the 11                
RDDs. 
 
 
 
 



 
 
Step 5. Similarity computation. 
 
We are at the final step of our process. When documents are represented in terms of term                 
frequency and inverse document frequency, the usual way to compare them to each other and               
to construct similarity scores is to use ​cosine similarity.  
 
Given two vectors and the ​cosine similarity ​between these two   w , ., )d1 = ( 1 . wn   (v , ., )d2 =  1 . v2        
vectors is their normalized dot product, i.e.: 
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Each vector for us will represent a single document, and will be formed as follows: 
 

 tf dfwi =  i · i i  
Here, is the term frequency for the word ​i in the document ​d, ​and is the ​inverse f  t i                df  i i     
document frequency ​of the word ​i ​in your collection which is computed (in our specific case)                
as: 
 

df  log  i i =  2 df i
N+1  

where ​N ​is the number of documents in the Guttenberg collection (11), and is the ​documentf   d i  
frequency for the word i ​that you computed on previous step. 
 
This, for example, if a word "little" occurs in all 11 documents and occurs 24 times in "Alice in 
Wonderland", the the weight of the word "little" in "Alice in Wonderland" is going to be: 
 

 = 3.0127…4 og  wlittle = 2 · l 2 11
12  

 
Because all our term frequencies and document frequencies are positive, and because the             
inverse document frequency is guaranteed to be non-negative, the cosine similarity can range             
from 0 (two documents are NOTHING LIKE EACH OTHER) to 1 (two documents are essentially               
copies of the same document - although in our case, since we are only looking at the similarity                  
of the top 100 words, the latter is not quite the case). 



 
Last task. ​Let us write the final program, ​cosineSim.py. ​This program shall retrieve the               
document frequencies RDD, and the 11 term frequencies RDDs from where your ​idf.py and              
tf.py​ programs saved them. 
 
It shall then compute the cosine similarity between every pair of documents in our Guttenberg               
collection.  
 
Finally, it shall form an RDD that consists of the key representing the pair of documents being                 
compared, and the value -- the computed cosine similarity between them based on the top 100                
words. 
 
Your program shall then: 
 

● Pickle the prepared RDD to the file ​similarities.pickle ​in your home HDFS            
directories. 

● Pretty print the output in the form of a table looking like this: 
 
 
           docId1  docId2   docId3 docId5 docId6   docId7   docId8 docId9 docId10  docID11 

docId1        1    sim12     sim13  ..                           ..                 sim1_11 

docId2      sim21    1      …                           …                           sim2_11 

docId3                                     …. 

docId5 

docId6 

docId7 

docId8 

docId9  

docId10  

docID11    sim11_1 sim11_2 …          …                                   …            1 

 

 

( ​you can choose to output either the full matrix, or just the upper diagonal matrix of similarities). 
 
Notes. You can compute all cosine similarities separately here, and then create the appropriate               
RDD via ​sc.parallelize(). ​When working on this step, please remember to carry with you              
the identity of each document - the file name (without the path) is probably the best and the                  
most succinct key, however, you are welcome to hardcode as keys short references to book               
titles.  
 
To compute logarithms, you can import NumPy (pyspark is a full pass-through Python             
interpreter). To get the dot products, you can use the inner join transformation effectively to               
combine term frequencies and (inverse) document frequencies. The dot product itself has sums             
in it - look into ​reduceByKey() ​or some other aggregation transformation.  
 
 



 
Deliverables and Submission. 
 
Submit all programs you built for this assignment: ​top100.py, frequentWords.py,          

tf.py, idf.py, cosineSim.py. ​If you place all the functions you defined for the pySpark              
computations into a separate Python file (a separate package, e.g.), submit it as well. 
 
Include a README file specifying how to run the programs. In general all your programs shall                
be runnable in one uninterrupted sequence, and individual programs must successfully run            
using ​spark-submit​ tool. 
 
 
Submit using handin from the unixN.csc.calpoly.edu machines. 
 

$ handin dekhtyar lab08-1 <files> 

 

Good Luck! 


