
CSC 369: Distributed Computing
Spring 2020

 Lab 8-2
Due: Wednesday, June 9, end of the day

This is an individual assignment.

Dataset

For this assignment you are working with the CSC 365 KAZTENJAMMER dataset. The dataset
follows the recording and performing career of an all-female Norwegian band Katzenjammer.
The four members of the band, Sloveig, Marianne, Anne-Marit and Turid turn their live shows
into a cascade of instrument changes. The dataset documents the albums the band released,
the songs on the albums, and the typical ways in which the songs are performed live: the
instruments each band member plays, the vocals, and their position on the stage. Examples of
the band’s performances can be found in abundance on Youtube.

The dataset consists of seven CSV files:

File Name Columns Explanation

Band.csv Id,Firstname,Lastname List of members of the band

Albums.csv AId,Title,Year,Label,Type List of albums the band released

Songs.csv SongId, Title List of all songs
recorded/performed live

Instruments.csv SongId,BandMate,Instrument Instruments played by each
bandmate in live performances of
each song

Performance.csv SongId,BandMate,StagePosition Stage position occupied by each
bandmate in live performances of
each song

Vocals.csv SongId,BandMate,Type Type of vocals (lead, shared,
chorus) contributed by the
bandmates to each live
performance of each song.

Tracklists.csv AlbumId,Position,SongId List of songs on each album

Notes. The README file for the dataset with a fuller explanation is provided on the static
course web page. All "connections" (foreign keys) between tables are straightforward: e.g.,
SongId columns from Performance.csv, Vocals.csv, and Instruments.csv files
take values from the SongId column in the Songs.csv file.

Setting Up Data Frames.

I am sharing some starter code with you that takes care of turning the seven CSV files in the
dataset into PySpark Data Frames. The code is available in the lab08.py file found on the
Lab 8 resources page on the static web site. The setup portion of the code looks as follows:

KATZENJAMMER dataset files

filenames

filenames = {"albums":"/data/katzenjammer/Albums.csv",

 "band": "/data/katzenjammer/Band.csv",

 "instruments": "/data/katzenjammer/Instruments.csv",

 "performance": "/data/katzenjammer/Performance.csv",

 "songs": "/data/katzenjammer/Songs.csv",

 "tracklists": "/data/katzenjammer/Tracklists.csv",

 "vocals": "/data/katzenjammer/Vocals.csv"}

attribute lists for each data filke

attributeLists = {"albums": [tp.StructField("AId",tp.IntegerType()),

 tp.StructField("Title", tp.StringType()),

 tp.StructField("Year", tp.IntegerType()),

 tp.StructField("Label",tp.StringType()),

 tp.StructField("Type", tp.StringType())],

 "band": [tp.StructField("Id", tp.IntegerType()),

 tp.StructField("Firstname", tp.StringType()),

 tp.StructField("Lastname", tp.StringType())],

 "instruments": [tp.StructField("SongId", tp.IntegerType()),

 tp.StructField("BandmateId", tp.IntegerType()),

 tp.StructField("Instrument", tp.StringType())],

 "performance": [tp.StructField("SongId", tp.IntegerType()),

 tp.StructField("BandMate", tp.IntegerType()),

 tp.StructField("StagePosition", tp.StringType())],

 "songs": [tp.StructField("SongId", tp.IntegerType()),

 tp.StructField("Title", tp.StringType())],

 "tracklists": [tp.StructField("AlbumId", tp.IntegerType()),

 tp.StructField("Position", tp.IntegerType()),

 tp.StructField("SongId", tp.IntegerType())],

 "vocals": [tp.StructField("SongId", tp.IntegerType()),

 tp.StructField("Bandmate", tp.IntegerType()),

 tp.StructField("Type", tp.StringType())]

 }

schemas

schemas = {key: tp.StructType(alist) for key,alist in zip(attributeLists,

 attributeLists.values())}

The data frame definitions are shown below (please note, the code is formatted for readability,
Python will not properly parse it - use the code provided in lab08.py file instead for running)

albumsDF = spark.read.format("csv").schema(schemas["albums"])

 .option("header",True).option("quote", "'")

 .load(filenames["albums"])

bandDF = spark.read.format("csv").schema(schemas["band"])

 .option("header",True).option("quote","'")

 .load(filenames["band"])

instrumentsDF = spark.read.format("csv").schema(schemas["instruments"])

 .option("header",True).option("quote","'")

 .load(filenames["instruments"])

performanceDF = spark.read.format("csv").schema(schemas["performance"])

 .option("header",True).option("quote","'")

 .load(filenames["performance"])

songsDF = spark.read.format("csv").schema(schemas["songs"])

 .option("header",True).option("quote","'")

 .load(filenames["songs"])

tracklistsDF = spark.read.format("csv").schema(schemas["tracklists"])

 .option("header",True).option("quote",".")

 .load(filenames["tracklists"])

vocalsDF = spark.read.format("csv").schema(schemas["vocals"])

 .option("header",True).option("quote","'")

 .load(filenames["vocals"])

This code should yield correctly parsed data frames for each of the seven data files. While our
assignment includes active use of a subset of the data frames, it is recommended that you keep
the code in its entirety, in case you need information from any of the data frames. Here is how
the instrumentsDF data frame looks like:

>>> instrumentsDF.show(10)

+------+----------+--------------+

|SongId|BandmateId| Instrument|

+------+----------+--------------+

| 1| 1| trumpet|

| 1| 2| keyboard|

| 1| 3| accordion|

| 1| 4|bass balalaika|

| 2| 1| trumpet|

| 2| 2| drums|

| 2| 3| guitar|

| 2| 4|bass balalaika|

| 3| 1| drums|

| 3| 1| ukalele|

+------+----------+--------------+

only showing top 10 rows

Assignment

Part 1

The KATZENJAMMER dataset is what we call normalized: the data is broken into separate
collections (tables, in case of relational databases), and each collection/data file contains only
information about a single aspect of the dataset. Such normalization reduces duplication and
makes the dataset more maintainable in case new information needs to be added, but provides
for poor visualization of information. For example, this is how the tracklistsDF data frame
looks:

>>> tracklistsDF.show(10)

+-------+--------+------+

|AlbumId|Position|SongId|

+-------+--------+------+

| 1| 1| 1|

| 1| 2| 2|

| 1| 3| 3|

| 1| 4| 4|

| 1| 5| 5|

| 1| 6| 6|

| 1| 7| 7|

| 1| 8| 8|

| 1| 9| 9|

| 1| 10| 10|

+-------+--------+------+

only showing top 10 rows

We want to concentrate our work with the KATZENJAMMER dataset on creating data frames
that provide immediate visual insight into our data. Specifically, we are interested in creating a
data frame that has one row for each song, and lists what instruments each member of
Katzenjammer plays on this song, and who sings lead vocals. This task would be fairly
straightforward, if it wasn't for the fact that some performers play multiple instruments on certain
songs, and some performers share lead vocals on some songs.

As such, we will accomplish our ultimate task in a set of steps.

Step 1. Our first goal is to condense the instrumentsDF data frame, so that each
performer-song combination shows in exactly one row, and if a performer plays multiple
instruments on a song, they are presented in a list. (In fact, we will create a list of instruments
for each performer-song combination, some lists will consist of just one entry though). As we are
doing this, we also want to replace SongID and Band member Id in this data frame with the title
of the song and the first name for the performer (Solveig, Marianne, Anne-Marit, or Turid).

Write a series of pySpark statements that produce a data frame that consists of the following
columns:

● Song: the title of the song
● Name: the first name of one of the performers
● Instruments: the list of instrument the performer plays on the song.

The output should look like this (notice multiple instruments Solveig plays on "Demon Kitty Rag";
also, this list includes just the first 20 records from the data frame):

+--------------------+----------+----------------+

| Song| Name| Instruments|

+--------------------+----------+----------------+

| Overture| Solveig| [trumpet]|

| Overture| Marianne| [keyboard]|

| Overture|Anne-Marit| [accordion]|

| Overture| Turid|[bass balalaika]|

| A Bar In Amsterdam| Solveig| [trumpet]|

| A Bar In Amsterdam| Marianne| [drums]|

| A Bar In Amsterdam|Anne-Marit| [guitar]|

| A Bar In Amsterdam| Turid|[bass balalaika]|

| Demon Kitty Rag| Solveig|[drums, ukalele]|

| Demon Kitty Rag| Marianne| [banjo]|

| Demon Kitty Rag|Anne-Marit|[bass balalaika]|

| Demon Kitty Rag| Turid| [keyboards]|

| Tea With Cinnamon| Solveig| [drums]|

| Tea With Cinnamon| Marianne| [ukalele]|

| Tea With Cinnamon|Anne-Marit| [accordion]|

| Tea With Cinnamon| Turid|[bass balalaika]|

|'Hey Ho on the De...| Solveig| [drums]|

|'Hey Ho on the De...| Marianne| [keyboards]|

|'Hey Ho on the De...|Anne-Marit| [guitar]|

|'Hey Ho on the De...| Turid|[bass balalaika]|

+--------------------+----------+----------------+

Hint: In the instrumentDF data frame, each row contains a single instrument for a performer
in a given song. In the output, these instruments, whenever there are multiple ones, need to be
combined in a single row. The operation that achieves effects like that is grouping. However, if
you carefully look at the Data Frame API, you will notice that it has very SQL-like grouping and
aggregation operations, that allow for computing of aggregate values like sum, average or count
of elements, but do not easily lend itself to list construction. This is where you can revert to
RDDs. Think for the following set of steps:

● use the RDD component of the data frame
● transform the RDD, if needed, from a collection of pyspark.sql.Row elements, to a

collection of tuples/lists.
● Perform appropriate grouping/aggregation operations, that combine instruments for each

song-performer combination into an list.
● Convert the RDD you obtained back to a data frame.

To get the last step correctly, you need to define the schema of the resulting data frame. Use
the column names from the illustration above.

Step 2. Now, let us refactor the data frame you obtained at the end of Step 1. We want to
produce a new data frame that in each row list the title of a song, and the instruments each
performer is playing - one column per person, with columns named after that person. The output
should look as follows:

+--------------------+--------------------+-------------------+--------------+--------------------+

| Song| Solveig| Marianne| AnneMarit| Turid|

+--------------------+--------------------+-------------------+--------------+--------------------+

| Curvaceous Needs| [drums]| [guitar]| [banjo]| [bass balalaika]|

| Der Kapitan| [trumpet, drums]| [keyboards]| [accordion]| [bass balalaika]|

| Oh My God| [ukalele]| [drums]| [accordion]| [bass]|

| Let it Snow| [washboard]| [ukalele, kazoo]| [banjo]| [bass balalaika]|

| Soviet Trumpeter|[trumpet, keyboards]| [keyboards]| [banjo]|[xylophone, mando...|

| Tea With Cinnamon| [drums]| [ukalele]| [accordion]| [bass balalaika]|

| Ouch| [drums]| [guitar]| [banjo]| [bass balalaika]|

| Cherry Pie| [washboard]| [ukalele]| [banjo]| [bass balalaika]|

| A Bar In Amsterdam| [trumpet]| [drums]| [guitar]| [bass balalaika]|

| My Own Tune| [drums]|[guitar, toy piano]| [ukalele]|[bass balalaika, ...|

| My Dear| [drums]| [bass]| [guitar]| [guitar]|

| Lady Marlene| [keyboards]| [banjo]| [keyboards]| [xylophone]|

| Rockland| [guitar]| [bass]|[small guitar]| [accordion]|

| Old De Spain| [ukalele]| [guitar]| [banjo]| [bass balalaika]|

| Lady Gray| [ukalele]| [guitar]| [mandolin]| [bass]|

|Cocktails and Rub...| [keyboards]| [drums]| [guitar]| [bass balalaika]|

| Overture| [trumpet]| [keyboard]| [accordion]| [bass balalaika]|

|'Hey Ho on the De...| [drums]| [keyboards]| [guitar]| [bass balalaika]|

|Listening to the ...| [drums]| [guitar]| [banjo]| [bass balalaika]|

| Mother Superior| [bass balalaika]| [accordion]| [keyboards]| [mandolin]|

+--------------------+--------------------+-------------------+--------------+--------------------+

only showing top 20 rows

Hint. One straightforward way to solve this problem is to create four data frames featuring only
the instrument play of each of the four performers. Here is, for example, what Solveig's data
frame would look like:
>>> solveigDF.show(10)

+--------------------+-------+-------------------+-------------+

| Song| Name| Solveig|SolveigVocals|

+--------------------+-------+-------------------+-------------+

| Overture|Solveig| [trumpet]| No|

| A Bar In Amsterdam|Solveig| [trumpet]| lead|

| Demon Kitty Rag|Solveig| [drums, ukalele]| No|

| Tea With Cinnamon|Solveig| [drums]| chorus|

|'Hey Ho on the De...|Solveig| [drums]| chorus|

| Wading in Deeper|Solveig| [xylophone]| lead|

| Le Pop|Solveig| [drums]| No|

| Der Kapitan|Solveig| [trumpet, drums]| chorus|

| Virginia Clemm|Solveig| [xylophone]| lead|

|Play My Darling, ...|Solveig|[guitar, harmonica]| chorus|

+--------------------+-------+-------------------+-------------+

only showing top 10 rows

Once you create these data frames, assembling the data frame above is a matter of multiple
careful join operations.

Note on syntax. When joining two data frames, the result of the join operation often may
contain multiple columns with the same name. PySpark is not very graceful in handling these,
and in followup operations (joins, filters and so on) the most intuitive ways of referring to these
columns might yield syntax errors. There are multiple ways to manage this. One way is to
proactively use withColumnRenamed() to disambiguate all column names in the resulting
data frame. Here is a short illustration using two toy dataframes.
>>> testSchema01 = tp.StructType([tp.StructField("Id",tp.IntegerType()),

tp.StructField("Name", tp.StringType())])

>>> testSchema02 = tp.StructType([tp.StructField("Id",tp.IntegerType()),

tp.StructField("Place", tp.StringType())])

>>>

>>> df1 = spark.createDataFrame([[1,"bob"],[2, "diana"], [3, "kyle"], [4, "mary"]],

testSchema01)

>>> df2 = spark.createDataFrame([[1,"chicago"], [2, "new york"], [3, "new york"], [4, "san

jose"]], testSchema02)

>>>

>>> dj = df1.join(df2, df1.Id == df2.Id, "inner")

>>> dj.show()

dj.filter(dj.Id == 1)

df1 = df1.withColumnRenamed("Id","Person")

dj1 = df1.join(df2, df1.Person == df2.Id, "inner")

dj1.filter(dj1.Id==1).show()+---+-----+---+--------+

| Id| Name| Id| Place|

+---+-----+---+--------+

| 1| bob| 1| chicago|

| 3| kyle| 3|new york|

| 4| mary| 4|san jose|

| 2|diana| 2|new york|

+---+-----+---+--------+

>>>

>>> dj.filter(dj.Id == 1)

Traceback (most recent call last):

 File "/usr/hdp/3.1.0.0-78/spark2/python/pyspark/sql/utils.py", line 63, in deco

 return f(*a, **kw)

 …. … … <<PySpark/Yarn Error Messages>>

pyspark.sql.utils.AnalysisException: "Reference 'Id' is ambiguous, could be: Id, Id.;"

>>>

>>> df1 = df1.withColumnRenamed("Id","Person")

>>>

>>> dj1 = df1.join(df2, df1.Person == df2.Id, "inner")

>>>

>>> dj1.filter(dj1.Id==1).show()

+------+----+---+-------+

|Person|Name| Id| Place|

+------+----+---+-------+

| 1| bob| 1|chicago|

+------+----+---+-------+

The second solution leverages the fact that in PySpark data frames columns retain their
provenance. in the original data frame dj1 in the example above, the two Id columns internally
are distinguished by the names of data frames they came from. So, as counter-intuitive it is for
those of us who are used to scoping rules in SQL to write this, the following actually works:

>>> dj = df1.join(df2, df1.Id == df2.Id, "inner")

>>> dj.show()

+---+-----+---+--------+

| Id| Name| Id| Place|

+---+-----+---+--------+

| 1| bob| 1| chicago|

| 3| kyle| 3|new york|

| 4| mary| 4|san jose|

| 2|diana| 2|new york|

+---+-----+---+--------+

>>> dj.filter(df1.Id==1).show()

+---+----+---+-------+

| Id|Name| Id| Place|

+---+----+---+-------+

| 1| bob| 1|chicago|

+---+----+---+-------+

Same thing applies when the operation you are trying to perform is join.

Step 3. At the end of Step 2 you should have a data frame formatted as follows:

+--------------------+--------------------+-------------------+--------------+--------------------+

| Song| Solveig| Marianne| AnneMarit| Turid|

+--------------------+--------------------+-------------------+--------------+--------------------+

Here, the contents of each of the columns named Solveig, Marianne, AnneMarit and
Turid are lists of instruments.

Now, let us add one last piece of information and create our final data frame. This time, we want
to add the lead vocalist to the data frame.

To do this, first and foremost, you can filter the vocalsDF data frame to keep only lead vocals
information. Next, you need to recognize the fact that a single song can have multiple lead
vocalists. We can address this the same way we addressed on person playing multiple
instruments in Step 2. (I won't say more here, but do remember to use an appropriate schema
when converting back to data frames).

You should get something like this, at this stage (notice multiple lead vocalists on several
songs):

+--------------------+-----------------+

| Song| LeadVocals|

+--------------------+-----------------+

| A Bar In Amsterdam| [Solveig]|

| Demon Kitty Rag| [Marianne]|

| Tea With Cinnamon| [Marianne]|

|'Hey Ho on the De...| [Marianne]|

| Wading in Deeper| [Turid, Solveig]|

| Le Pop|[Turid, Marianne]|

| Virginia Clemm| [Solveig]|

|Play My Darling, ...| [Anne-Marit]|

| To the Sea| [Anne-Marit]|

| Mother Superior| [Turid]|

+--------------------+-----------------+

only showing top 10 rows

Your final step is to combine this data frame with the data frame you obtained on Step 2.

The final comment is this: not all songs have a lead vocalist, but we DO WANT your final data
frame to contain entrees for ALL songs. In addition, you should replace null values (if you wind
up having them) with something nicer, e.g., "[No one]" (notice, this still must be a list).
Note: this may require going a couple of steps back and changing things earlier…

Step 4. Our last task is separate from the Step 1 -- Step 3 sequence, but I want you all to
observe the convenience of contingency tables.

We are interested in looking at the incidences of one musician playing one specific instrument
on a song, and another one - playing a different instrument.

To keep our output under control, we concentrate on Solveig and Marianne (at the end you
should be able to notice a certain pattern), and we restrict the instruments to the following set:

● drums
● keyboards
● bass balalaika
● strings

As "strings" we count the following instruments: "guitar", "ukalele", "banjo", "mandolin", and
"small guitar"

Write a sequence of PySpark statements that creates a data frame that contains the
contingency table for Solveig and Marianne playing the four instrument types above. Your
contingency table should look as follows:

+----------------+--------------+-----+---------+-------+

|Solveig_Marianne|bass balalaika|drums|keyboards|strings|

+----------------+--------------+-----+---------+-------+

| bass balalaika| 0| 0| 1| 0|

| drums| 1| 0| 7| 9|

| strings| 3| 3| 0| 4|

| keyboards| 0| 1| 1| 1|

+----------------+--------------+-----+---------+-------+

(it is possible that your table will be transposed - both variants are considered correct).

Hint. You can approach this problem by creating one data frame for Solveig's instruments and
one - for Marianne's. You can then combine the two data frames in the same way you combined
data in Step 2. Your data frame is essentially similar to that from Step 2 with main difference
being that your rows have atomic values in them, not lists (and, of course, you only need data
for Solveig and Marianne).

Finishing touches.

Put all your code in lab08-2.py file.

In the file, make sure your name appears in the header comment. Additionally, make sure that
the code executing each task is clearly labelled. You can keep all code (except for functions that
may be necessary for RDD operations) in a single "main" sequence - but again - PLEASE label
each chunk of code.

Each step should yield one data frame that we call final for that step. Figure out the size of each
final data frame (you can just run .count() in your code, or off-line). Then use the

df.show(<size>)

statement at the end of each step where df should be replaced by the name of your final data
frame and <size> is the size of that data frame.

Your code shall run without error when processed using spark-submit.

Submission
Handin from unixN.csc.calpoly.edu:
 $ handin dekhtyar lab08-2 <file>

