
CSC 369: Distributed Computing
Spring 2020

Lab 4 Specification

Due Date: Monday, Sunday, May 10, 2020, 11:59pm.
Note: :Lab 5 will come out on Monday, May 4. We will, therefore, have minimal grace period for
Lab 4. Lab 4 now has the status of a mini-project. This means it will run in parallel to at least
one other individual lab (Lab 5), possibly two labs (Lab 6 may be assigned on May 9).

Note 2: The Appendix A and the Examples Section of the Specification will be released as a
separate document.

Teams. This lab is for teams of two students each. Team assignments were made during the
Monday, April 27 lab period.

Submission. Submit using handin on the unixN.csc.calpoly.edu system. The
submission command is

$handin dekhtyar lab04 <files>

ONE submission per team, please! All your program files must contain the list of all team
members, regardless of who is the actual author of the file.

Application: You are building covidTracker.py: a Python3 MongoDB-powered analytical
tool for tracking COVID spread in the US. This program will run in command line, take as input
a description of the information needs of a data analyst, and produce an HTML report containing
tables and graphs of the desired analytics.

Input Data. Your program shall acquire data from the following two datasets:

Source File Data

https://covidtracking.com/api /api/v1/states/daily.json COVID-19 data for US States

New York Times COVID dataset us-counties.csv County-level COVID-19 data

The first dataset is the current version of the data we were using in Labs 1--3. It provides rich
state-by-state daily statistics. The second dataset contains county-by-county data. This dataset
has fewer features but better granularity.

https://covidtracking.com/api
https://github.com/nytimes/covid-19-data

Running the application. Your program shall be run using the following command

$ python3 covidTracker.py -auth <authentication file> -config <config file>

Both parameters are optional. Default values are:

Authentication file: credentials.json
Config file: trackerConfig.json

Authentication file format.

The authentication file is used to avoid hard-coding passwords into the code, and to allow the
instructor to use his own databases to test your program. Its format is:

{server: <server>,

 username: <username>,

 password: <password>,

 authDB: <authentication database>,

 db: <work database>

}

The server parameter is optional, default value is “localhost”.

The db parameter specifies the MongoDB database that will be used on the current run of your
application.

The password parameter is optional. If specified, it can take either a string value that is the
password to be passed to MongoDB in clear text (not the world’s safest option, but…), or it will
be set to -1. If the password is either missing, or set to -1, your program shall interact with
MongoDB to produce a password prompt. See Appendix A for the description of how this can be
done.

Functionality overview. Data Management. Your program shall maintain the COVID-19
tracking database consisting of two collections: covid - storing rich tracking information from
the covidtracker.com API, and states - storing the somewhat feature-poor but more
granular county-by-county tracking information.

When the work database does not contain these collections, your program shall fetch the most
recent data from the two data sources, and create the collections prior to proceeding with any
additional work.

Functionality overview. Analytics. Your program shall be able to produce the output for a
range of analytical queries. Each analytical query has (i) a target collection, (ii) a target
dependent variable, (iii) a target time range, (iv) aggregation level, (v) filter, and (vi) the
task to perform.

Target collection: There are two:

● State-level data (covid).
● County-level data (states)

The target collection puts some restrictions on other aspects of the query.

Target dependent variable. We have the following dependent variables:

Table 1. Dependent Variables and their availability in the collections

Variable covid states Value

Cumulative number of positive cases yes yes “positive”

Daily increase in positive cases yes yes “positiveIncrease”

Cumulative number of COVID-19 deaths yes yes “death”

Daily increase in number of deaths yes yes “deathIncrease”

Total cumulative number of administered tests yes no “tests”

Daily number of completed tests yes no “testIncrease”

Total cumulative number of hospitalizations yes no “hospitalization”

Daily number of new hospitalizations yes no “hospitalizationIncrease”

Table 1 above shows the concordance between the eight dependent variables your application
shall track, and the two data collections it works with. If the cell label is “yes”, your program is
responsible for producing analytics for this dependent variable for this collection.

Target time range. With each analytical query, a time range can be specified. By default, the
time range is the entire range of dates in the collection. If a range is specified, it will contain both
the upper and the lower boundary, and the boundaries will always be inclusive. Your program

shall also handle some special time ranges: today, past seven days, past month. These are
defined below.

Aggregation level. For the covid collection we have the following data aggregation levels:

1. Country-wide. The data for all states is aggregated, and the US-wide results are
reported. This includes information from not just the 50 states plus DC, but all other
territories and possessions.

2. Fifty States+DC. A variation of country-wide level, that only includes information about
the 50 US states plus the District of Columbia, but aggregates across these 51 entities.

3. State-wide. The information is reported on a state-by-state basis.

For the states collection, we have the following data aggregation levels:

1. State-wide. The information is aggregated over all counties in each state.
2. County-wide. The information is presented on a county-by-county basis.

(there is no country-wide aggregation level for the states collection).

Filters. For the covid collection, the information can be filtered as follows:

1. No filter. No states, or territories/possessions are excluded from the output.
2. Fifty States+DC. Special filter associated with the namesake aggregation level that

keeps only the 50 US States and Washington, DC data. Also works with the state-wide
aggregation level.

3. State-level. One or more specific states. Works with state-wide aggregation level, and
will produce requested information only for one or more selected states.

For the states collection we enforce the state-level filter, with a single state target. That is,

your program shall only report county-level analytics on a one-state-at-a-time basis. However,
for the states collection we also provide an additional county-level filter, that allows for
narrowing the scope of the analytical report to one or several specifically named counties, rather
than keeping it to all counties.

Tasks. For each valid collection-dependent variable combination, your program shall
implement the following analytical tasks:

1. Track over time. The most straightforward analysis: output the time series for the
selected dependent variable over the given time period, and at the correct level of
aggregation.

2. Statistics. For the time series for the selected dependent variable over the given time
period at the correct level of aggregation compute the mean, and the standard deviation.
We use population standard deviation in this case, as there is no sampling.

3. Ratios. Given two dependent variables compute a time series of the ratio between them
for a given aggregation level.

Output. The output for each individual analytical query can be produced in a number of ways:

● Table. The most straightforward is the tabular output, showing the information requested
for each day in the given time range, and/or reporting and requested statistics.

● Graph. Using Python’s matplotlib library, you can graph the result of any query against
time, or, in some cases - you can create scatter plots. Matplotlib allows you to save your
graphs as images. Graphs have several properties that will be specified in the input file.

The overall output is an HTML document that combines the tabular and graph outputs for all
requested queries, and creates a single report. The HTML document does not have to be fancy,
just just needs to load into a browser and display both the tables and the images in reasonable
way.

The overall design of the HTML report is left up to individual teams. It shall contain a header at
the top identifying it (as well as its creators), a layout for reporting results of all queries - both in
textual and tabular, and graph form, and a footer with the information about when and how it
was created.

Syntax and semantics of the configuration file.

The work of your program shall be primarily driven by the configuration file. The file will contain
a single JSON object with the configuration settings for the program’s run. The overall syntax of
the configuration document is as follows:

{refresh: true|false,

 collection: <collection>,

 aggregation: <aggregationLevel>,

 time: <timeSpecification>,

 target: <states>,

 counties: <counties>

 analysis: [{task: <taskSpecification>,

 output: <outputSpecification>},

 ...

 {task: <taskSpecification>,

 output: <outputSpecification>},

],

Output: <filename>

}

The purpose of each field in the document is described in Table 2 below.

Table 2. Overview of Configuration Document Fields

Field Value Purpose

refresh true or false Flag indicating whether to use existing data or get a
fresh copy

collection string Either “covid” or “states”

aggregation string One of predefined values for the aggregation level

time Date or compound Time frame of the query

target Array or single
value (string)

State or list of states

counties Array or single
value (string)

County or list of counties

analysis array List of analytical query specifications

task compound Part of analytical query specification defining what
analysis needs to be performed

output Compound or array
of compound
objects

Part of analytical query specification defining how the
results should be placed into the output HTML report

We describe each component of the configuration file in turn.

The refresh flag.

This is a flag indicating to your program whether it should get a new copy of the data from the
sources. Together with the db parameter of the authentication document, the refresh flag
controls whether your program uses current data or refreshes it. Specifically, your program shall
act as follows:

Case 1: The database specified in the db parameter does not have one of the two or both
collections (covid and/or states). In this case your program shall, regardless of the value of
the refresh flag, upload the most recent versions of both collections to the specified database.

Case 2: The database specified in the db parameter does have both collections, and the
refresh flag is set to true. .In this case your program shall upload the most recent versions
of both collections to the specified database.

Case 3: The database specified in the db parameter does have both collections, and the
refresh flag is set to false. .In this case your program shall proceed with executing the
analytical queries against the already existing data.

The collection parameter.

The collection parameter takes one of two values: “covid” or “states”. It is a global
parameter for the entire run of your program: all analytical queries will be running against only
one of the collections on a given single run. (this makes your life a little bit easier).

NOTE: the value of the collection parameter determines which combinations of other
parameters are valid. Not all combinations are intended for use with both collections.

The aggregation parameter.

The aggregation parameter determines the aggregation level for all analytical queries defined
in the configuration document. It takes one of four predefined values, some of which are
associated with only one collection. Table 3 contains the list of values for the aggregation
parameter and their meaning.

Table 3. Aggregation level parameter values.

value covid states Aggregation level

“usa” yes no USA-wide - aggregate over all data including
possessions and territories

“fiftyStates” yes no Aggregate over 50 states + DC (must be combined
with appropriate filter)

“state” yes yes Aggregate/Report results by individual state

“county” no yes Aggregate/Report results by individual county

Notes: Both “usa” and “fiftyStates” values require aggregation of state-by-state data
into a single result. The difference is that “fiftyStates” is a combined aggregation
level/filter specification -- when this value is specified, every single query your program runs
shall include a filter that keeps only the data from the 50 US states and Washington, DC.

Information about US territories, possessions, and military installations will be ignored in such
analyses.

The time frame parameter.

The time parameter specifies the time frame of the query. It can take one of four predefined
values, as well as a compound value defining the range of dates. The meaning of these values
is described in Table 4.

Note, the time frame is a global parameter for all analytical queries requested in the
configuration file. All queries shall be run against the specified time frame.

Table 4. Values of the time frame parameter

Value Meaning

“today” Set the time frame to today’s date

“yesterday” Set the time frame to yesterday’s date (useful alternative to “today”
if today’s data is not available yet)

“week” Set the time frame to be a seven day span that ends on today’s date
(this is regardless of whether the database contains data about
today).

“month” Set the time frame to be a time span that starts on the 1st of the
current month and ends on today’s date.

{start: <start>,

 end: <end>

 }

Compound value specifying the exact inclusive range of dates. The
dates shall be rendered in the formats appropriate for the specific
collections.

Note: The covid and states collections come from different sources that use different date
formats. I highly recommend that during the parsing of the states collection you either convert
the date to the numeric YYYYMMDD format (which is really convenient for comparisons), or
add a version of the date field in this format. Then your <start> and <end> values for the date
ranges can always be in YYYYMMDD format, and your program will only deal with numeric
comparisons.

The Target state(s) parameter.

This is where things start getting tricky. The syntax of the target parameter, by itself, is
simple and straightforward: it is either:

● A string representing a single two-letter code of a US state, territory, possession, or
military designation, or

● A JSON array of strings representing a single two-letter code of a US state, territory,
possession, or military designation.

This parameter specifies the global (i.e., applicable to all requested analytical queries)
state-level filter. The values of this parameter are subject to the following constraints and
interactions with the collection and aggregation parameters:

● If the collection value is “states”, then the value of the target parameter is a
single state. That is: for queries looking into county-level data, we restrict their
applicability to a single state.

● If the collection value is covid, then the target parameter can be either a single
value or an array of values:

○ For aggregation levels of “usa” and “fiftyStates” the presence of a
specific state filter means that the filter is applied first, and then information about
the states that remained will be aggregated to the appropriate level. Note that if
“fiftyStates” aggregation level is selected, your program shall ignore any
two-letter codes that do not belong to a US state or Washington, DC.

○ For the aggregation level of “state” the target state filter simply provides
information about one or more states whose data shall be used in the analytical
queries (without aggregation).

The counties filter.

The counties parameter shall only appear in configuration documents that set collection
to “states”. If the collection parameter is set to “covid”, and the configuration file
contains the counties parameter, it shall be ignored by your program.

When specified alongside the collection:“states” parameter, the counties parameter
takes as its value a single string, or a JSON array of string values.. Each string value is
expected to be a valid name of a county in the state specified in the target parameter value.
Any values that are not a correct name of a county shall be ignored, but shall not raise any
errors.

When specified, your program shall limit the consideration of all queries to the specified county,
or list of counties. If aggregation:”state”, the county filter is applied first, after which the
results from the remaining counties are aggregated together into a single output.

The analytical queries

The analysis parameter stores information about the queries that your program has to
execute during its run. The value of the analysis parameter is an array of query documents.
For the sake of simplicity, even if requesting a single query to be run by the program, it shall be
placed inside a JSON array.

The format for the query document is as follows:

{

 task: <query description>

 output: <outputSpec>

}

Query Description

There are three types of analytical queries (tasks) that your program must support. Each is
described by a specific value of the task field. Table 5 documents the syntax of the task field
values, detailed explanations follow.

Table 5. Syntax of the task field.

Syntax Query/Task Type

{track: <variableName>} Track the variable value across time

{stats: [<variableName>,

 ...,

 <variableName>]

}

Compute the statistics for the given list of
variables over the given aggregation,
filter, and time frame

{ratio:{ numerator: <variableName1>,

 denominator: <variableName2>

 }

}

Track the value of a ratio of two variables
across time

In Table 5, all <variableName> values come from the Value column of Table 1.

Tracking individual variables across time. The

{track: <variableName>}

syntax specifies an analysis query that reports the values of the given variable (see Table 1)
across the globally specified time period, taking into account the global filter, and the level of
aggregation (see the Examples Section for specific examples).

Reporting Statistics. The

{stats: [<variableName>,

 ...,

 <variableName>]

}

syntax indicates an analytical query that computes and reports the mean and standard
deviation for each variable named over the specified time period, taking into account the global
filter and the level of aggregation. See the Examples Section for specific examples.

Tracking ratios. The

{ratio:{ numerator: <variableName1>,

 denominator: <variableName2>

 }

}

syntax specifies that the analytical query must report the values of a new variable:

 variableName1

ratioVariable= -------------------------
 variableName2

These values must be tracked over the specified time period, taking into account the global filter
and the level of aggregation. See the Examples Section for specific examples. See the
Examples Section for specific examples.

Handling division by zero. You are responsible for properly tracking the ratio variables ONLY
on the days when variableName2 is non-zero. As a convention you can assume that 0/0 = 0,
but you are not required to report values of the ratio variable on ANY day in which
variableName2 is 0.

Output specification

For each analytical query, the output field provides a specification of how the output should be
reported. The output field has the following syntax:

output: { graph: {type: <graphType>,

 legend: <on or off>,

 combo: <combinationIndicator>,

 title: <text>

 },

 table: {row: <rowDesignator>,

 column: <columnDesignator>,

 title: <text>

 }

 }

Both graph and table fields are optional, but the output specification must contain at least
one (possibly both).

Graph Specification.

The graph field provides the specification for the graph to use to display the results. For
track and ratio types of tasks the graph output is a Python3 matplotlib graph saved as a
file (and included in the output HTML document). The graph has time as the x axis and the
value of the specific variable being tracked as the y axis. The graph design is controlled by
the remaining parameters:

Table 6. Output specification overview.

Graph
attribute

Values Purpose Optional/
Mandatory

type One of
“bar”

“line”

“scatter”

Defines the type of graph to produce
 Bar graph (pyplot.bar(...))
 Line graph (pyplot.plot(...))
 Scatter plot (pyplot.scatter(...))

mandatory

legend “on” or “off” Indicates whether the legend shall be placed
on the graph

optional
(default
“off”)

combo One of Determines how to combine multiple

“separate”

“split”

“combine”

state/county data
 Separate graph for each state/county
 “Smart” mode (see below)
 One graph for all states/counties

mandatory

title string Title of the graph optional

Graph type. Your application shall support three types of graphs produced: bar graphs, line
graphs, and scatter plots. Each type shall use the appropriate matplotlib.pyplot method to
produce the output listed in the table above. You can decide how to decorate each of the
graphs types, and whether you want the same decorations always, or different decorations
depending on the variables being displayed.

Legend. If set to “on”, add a simple legend to the graph output.

Combination specification. Some aggregation level - collection combinations produce multiple
“streams” of data across time. For example your program may receive a configuration file for the
“Report all positive cases for California, Oregon and Washington, for the last seven days, aggregating at
state level” (i.e., report results for each state separately!). The graph output for such a query can
either combine the results in a single graph, or produce one graph per state. The combo
parameter controls the behavior of your output generator as follows:

combo:”separate” means building a separate graph for each state (or county, if the
collection is states and the aggregation level is county).

combo:”split” engages the “smart graph” mode. Here, you are allowed to report results for
multiple states/counties in a single graph, but you will optimize both how many states/counties
per graph are displayed, how many graphs are produced, and which states/counties are
combined on individual graphs using your own design sensibilities. The result is a set of one
or more graphs produced that jointly cover all the output generated by your query.

Combo:”combine” forces all output to be combined in a single graph, no matter how many
independent lines/colors (i.e., states/counties) it would place there.

Title. The title parameter, if present, contains the string to use as the title of the graph in the
output. This can be typed directly into the graph image, or used as the title in the HTML - how
you do it is left up to you. The default value is no title.

Table Specification

The table element, when present, specifies how the output will be rendered as an HTML table.
The format of the table element is

table: {row: <rowDesignator>,

 column: <columnDesignator>,

 title: <text>

 }

Here, row defines what information is rendered in the rows of the table, column defines what
information is rendered in the columns of the table, and title, similarly to the graph
description, specifies the optional title.

The row and column attributes take the following values:

Table 7. Row/Column specifications

Value Meaning

time Dates: one day per row or column. Only makes sense when the time frame is
one day or more, and when the task is NOT stats

state State-level data in accordance with aggregation level. If aggregation level is
“usa” or “fiftyStates” one row/column of aggregate numbers. If
aggregation level is “state”: one column/row per state.

county County-level data in accordance with aggregation level. Only makes sense if
collection is states. With county aggregation level, one row/column per
county in the output.

stats Report statistics. Only makes sense with stats tasks.

For track and ratio tasks/queries, specify both row and column for each table. For stats
tasks, only

table:{row: “stats”}

or

table: {column:”stats”}

specifications are needed.

Output Specification
The final element of the configuration file is output. It’s value is a name of an HTML file
where the report will be written.

For example

output: “april27.html”

specifies that the output of your program shall be placed in the april27.html file.
Additionally, the name of the file, without the extension, shall be used to name your graph files.
The exact file naming scheme for the graph files is left up to you, but you shall use the filename
for the output file as the prefix for all graph file names. This way, we can run your program
multiple times and create non-overlapping outputs in a single directory.

For the sake of simplicity, all file can be created in the current directory.

Deliverables

Your submission deliverables are:

● covidTracker.py program
● Any additional modules/packages you created in support of covidTracker.py
● README file with any information regarding your implementation.

