
. .
Spring 2020 CSC/CPE 365: Database Systems Alexander Dekhtyar
. .

Lab 1: JSON Manipulation

Due date: April 13, 10:00am.

Note: Lab 2 assignment may come out on Friday, April 10.

Lab Assignment

Assignment Preparation

This is an individual lab.

In this lab you will review how to work with JSON documents in two
programming languages: Python and Java. We will need to develop soft-
ware in both languages that works with JSON throughout the course; this
assignment allows you to take care of the boring details.

Additionally, this assignment introduces the types of tasks we will be
working on solving using distributed computing techniques throughout the
quarter. You will implement each of these tasks at least once more —
and possibly - up to three more times during the quarter using different
distributed computing frameworks.

DISCLAIMER

This lab has you work with current data about COVID-19 infections in the
United States. This includes information about both infections, and deaths
due to COVID-19. Some of the assignments have you analyze the fatalities
due to COVID-19 and compare them across time, and across different states.
I am giving you this assignment, because I want to emphasize the importance
of certain types of data analysis. In doing so, I understand fully that this
may be a sensitive issue to some of you, if you have experienced cases of
COVID-19 infections or deaths among the members of your family and/or
friends.

I hope that all of you can see the importance of timely analysis of COVID-
19 data (even if some of the analytical tasks I am asking you to implement

1



are somewhat contrived). If, however, you prefer to work with different data,
let me know. I have a prior year assignment that uses a different dataset,
that I can provide for you in lieu of this assignment. The two assignments
meet the same learning objectives and test the same skills.

Dataset

Given the circumstances, we will be using the information about COVID-19
infections in the United States. The data comes from the COVID Tracking
Project web site, specifically, from this URL:

https://covidtracking.com/api

We will be using the JSON version of the daily US States data, available
directly at this endpoint:

https://covidtracking.com/api/states/daily

For the sake of reproducibility, we will be using the data file I downloaded
on April 5, that includes all available data from the beginning of the track-
ing (March 3, 2020) through April 5, 2020. The data file is available for
download from the course web site.

The COVID Tracking project Website describes the format of each JSON
object in the collection as follows:

• state - State or territory postal code abbreviation.

• positive - Total cumulative positive test results.

• positiveIncrease - Increase from the day before.

• negative - Total cumulative negative test results.

• negativeIncrease - Increase from the day before.

• pending - Tests that have been submitted to a lab but no results have
been reported yet.

• totalTestResults - Calculated value (positive + negative) of total test
results.

• totalTestResultsIncrease - Increase from the day before.

• hospitalized - Total cumulative number of people hospitalized.

• hospitalizedIncrease - Increase from the day before.

• death - Total cumulative number of people that have died.

• deathIncrease - Increase from the day before.

2



• dateChecked - ISO 8601 date of the time we saved visited their website

• total - DEPRECATED Will be removed in the future. (positive +
negative + pending). Pending has been an unstable value and should
not count in any totals.

In addition to these attributes, the JSON objects will contain the following
attributes (explained elsewhere in the API documentation):

• date - date for which the data is provided in the YYYYMMDD format
(note: JSON treats this value as a number - make sure you parse
correctly).

• fips - Federal Information Processing Standard state code

• hash - the hash code of the record

• hospitalizedCurrently - number of people currently hospitalized

• hospitalizedCumulative - appears to be the new name for the hospitalized
attribute

• inIcuCurrently - number of people currently in the ICU

• inIcuCumulative - total cumulative number of people who required ICU
hospitalization

• onVentilatorCurrently - number of people currently on the ventilator

• onVentilatorCumulative - total cumulative number of people who at
some point were on ventilator

• recovered - total cumulative number of people who recovered from
COVID-19

Note: ”DEPRECATED” attribute means an attribute that can be found
in some of the earlier JSON records, that that is not found in the most
recent ones.

An example JSON object (pretty printed) is provided below:

{ "date":20200405,

"state":"MD",

"positive":3609,

"negative":24728,

"pending":null,

"hospitalizedCurrently":null,

"hospitalizedCumulative":936,

"inIcuCurrently":null,

"inIcuCumulative":null,

"onVentilatorCurrently":null,

"onVentilatorCumulative":null,

"recovered":159,

3



"hash":"cac549d0b74daccf3ab34404fc5dd3812b44bbff",

"dateChecked":"2020-04-05T20:00:00Z",

"death":67,"hospitalized":936,

"total":28337,

"totalTestResults":28337,

"posNeg":28337,"fips":"24",

"deathIncrease":14,

"hospitalizedIncrease":115,

"negativeIncrease":2243,

"positiveIncrease":484,

"totalTestResultsIncrease":2727}

In your processing of this data you will have to take into account the
fact that different JSON objects in the collection can have different format
– earlier objects will have fewer attributes; latter objects will have more
attributes, and will have some attributes renamed for clarity. The dataset
has NULL values, and you will be responsible for properly handling those
as well.

The data is provided to you in a single JSON file called daily.json. Note
that this file is a proper JSON object itself, i.e., it is a JSON array of JSON
objects. This makes automated parsing straightforward.

Python Assignment

You will write four Python programs. Each program will take daily.json

file as input. Each program shall print all output to screen (if we need to
capture it in a file, we will redirect the output). Some programs will output
a JSON array. Some programs will output data in human-readable format
– each program description will provide individual output description.

Please follow the strict naming conventions provided below. Your code
will be run automatically. Failure of the automated scripts to run your
code is grounds for deduction of points for non-compliance with assignment
specifications.

transformCOVID.py: This program shall output an array of JSON ob-
jects - one per state. Each JSON object shall have the following format:

• state - state abbreviation (same as state in the input file)

• startDate - the first date on which information about positive cases is
present in the input. Note: this may not be the date of the first case in
the state - that may have been earlier than March 3. It is simply the
date starting with which meaningful data about the state is available.

• newCases - JSON array containing the list of the numbers of new cases
for each day, starting with the startDate. Any null values in the orig-
inal data can be replaced with 0 for the purpose of this assignment
(even if it is strictly not correct as far as the actual accounting is
concerned).

4



• newDeaths - JSON array containing the list of numbers of new deaths
for each day, starting with the startDate. Similarly, you can replace
null values with zeros for the purpose of this assignment.

• mortalityRates - JSON array containing the list of mortality rates for
each day, starting with the startDate. The mortality rate is computed
as

TotalCumulativeDeaths

TotalCumulativePositiveCases

You can truncate the mortality rate to four decimal points. You can also
represent it as a percentage in the format XX.Y Y .

highestRatio.py: For this exercise you will, for each state, find the date
on which it had the highest ratio of the number of total cumulative positive

cases to the number of total cumulative negative casses. The output for this
program shall be a collection of CSV (comma-separated values) rows, with
each row representing a single state, and containing the following columns:

1. state – the state abbreviation

2. date – the date of the highest ratio

3. totalPositive – the total cumulative number of positive cases on that
day

4. totalNegative – the total cumulative number of negative tests on that
day

5. ratio – the ratio of totalPositive and totalNegative. Can be formatted
to three decimal places.

Output the states in alphabetical order of the state code.

NOTE: your output may contain more than 50 rows, because the dataset
includes data for Washington, DC, as well as other US territories and pos-
sessions.

moreThanCA.py: We want to find the day on which the total number of
states with a higher overall mortality rate due to COVID-19 was the highest.
We compute the mortality rate for a state on a given day as the percent of
all total cumulative positive cases that ended in a fatality. Note that due to
lack of data, this information may not be available for each state and each
day in the database.

Consider only the days on which the mortality rate for California can
be computed. For a given date, ignore any state for which you cannot
compute the mortality rate due to unavailability of appropriate data in the
JSON object (or lack of the JSON object itself for the state and the date).
Compare the mortality rates for each other state (including territories and

5



possessions) to California’s for each given day, and tally the number of states
that exceeded California’s rate on each day. Find the day where the largest
number of states exceeded California’s mortality rate.

Report the following infromation (just print). First, output the date.
Second, output the list of states whose mortality rates exceeded California’s
mortality rate on that date, in decreasing order of the mortality rates, one
state per line of output, ending the list with California itself. For each
state, report its name (abbreviation), and the computed mortality rate.
The mortality rate can be formatted either as a percentage in the XX.YY%
format, or as a number in the [0, 1] range with four decimal places.

grimLeaderboard.py: For each date found in the dataset output the
state with the largest number of total cumulative positive cases. Print out-
put in the CSV format, with each line represening a single date in chrono-
logical order (starting with the earliest date), and containing the date, the
abbreviation of the state, and the total cumulative number of cases. In case
of ties, report the state that is the first lexicographically (using the state
abbreviations). E.g., ”CA” lexicographically precedes ”NY”, therefore any
ties between these two states will result in reporting ”CA”.

Java Assignment

Your Java assignment is similar to your Python assignment. You will write
two programs.

stateInfo.java: For each state report the following information in JSON
format:

• state – state abbreviation

• daysSince100 – number of days since the total cumulative number of
cases hit or exceeded 100 (if the total cumulative number of cases
exceeded 100 on March 3, then report the total number of days since
March 3)

• averageCases – average number of new cases per day since the day the
total cumulative number of cases hit or exceeded 100 (following the
same caveat as daysSince100 attribute).

• dailyNewCases – JSON array containing the list of daily new case num-
bers in the state starting on the day when the total cumulative number
of cases hit or exceeded 100 (following the same caveat as daysSince100
attribute).

• dailyCoeff – JSON array containing the list of daily growth coefficients
starting on the day when the total cumulative number of cases hit
or exceeded 100 (following the same caveat as daysSince100 attribute).

6



The growth coefficient is the ratio between the number of new positive
cases on a given day, and a number of new positive cases on the day
before. Report growth coefficient of 0 if you are unable to compute it
(null values).

correlation.java: This is the most involved (if not the most complex)
task. We will compute the correlation between the number of positive cases
and the number of deaths for each state. However, we will do this with a
”shift”. The procedure is described below.

For a given state, we need to construct two vectors: a vector of cumulative
COVID-19 cases, and a vector of deaths due to COVID-19.

First, we construct the vector of the numbers of deaths due to COVID-19.
We skip all dates from the beginning of the dataset until our data shows a
non-zero number of cumulative deaths. After this, we include in our vector,
all cumulative number of deaths values until April 5.

Second, we constructs the vector of positive COVID-19 cases in a state.
This vector is constructed in two steps. First, we find the date of the first
non-zero cumulative number of positive cCOVID-19 cases reported. We then
construct a vector of all numbers of total positive cases from the abovemen-
tioned date and through April 5.

The two vectors we constructed though will be of different length – we
expect the vector of positive COVID-19 cases to be longer (positive cases are
reported ahead of deaths typically). To make both vectors of be of the same
size we remove from the longer vector (the vector of positive COVID-19
cases in a state) the necessary number of values from the end of the vector.

Example. Consider the following two lists. The list of cumulative number
of deaths is 0, 0, 0, 0, 0, 1, 3, 5, 8, 10, 16, 23. The list of positive COVID-19
cases is 0, 0, 1, 1, 4, 8, 14, 19, 29, 41, 48, 63. The extracted vector of deaths is
(1, 3, 5, 8, 10, 16, 23) and has the length of 7. The extracted vector of positive
COVID-19 cases is (1, 1, 4, 8, 14, 19, 29, 41, 48, 63) and has 10 elements. We
crop the last three values in the vector. Our final vectors, alinged against
each other are:

fatalities: (1, 3, 5, 8, 10, 16, 23)

infections: (1, 1, 4, 8, 14, 19, 29)

(do not be concerned about number of deaths possibly exceeding number
of infections in this alingment - we know that those happened on different
dates).

With the two vectors determined this way, we compute Pearson’s corre-
lation. Pearson’s correlation between two vectors of values a = (a1, . . . , an)
and b = (b1, . . . , bn) is computed using the following formula:

pearson =

∑

n

i=1
(ai − µa)(bi − µb)

√

∑

n

i=1
(ai − µa)2

√

∑

n

i=1
(bi − µb)2

,

7



where

µa =
1

n

n
∑

i=1

ai;µb

1

n

n
∑

i=1

are the means of vectors a and b respectively.

Your goal: for the correlation.java program, for each state compute the
correlation between the fatalities due to COVID-19 and cumulative numbers
of infections as described above. Report all correlations in the alphabetical
order of the state abbreviation. You output shall be in CSV format.

If a given state does not provide enough data to compute the correlation,
ignore it, and do not include it in the output.

General Comments and submission

All your programs, both written in Python and in Java must produce valid
JSON as output when asked for. This means that when your programs
are producing multiple JSON documents as output, the output shall be a
JSON array. For a single JSON object, there is no need to encapsulate it
in an array. For CSV-style outputs, feel free to output the header line with
column names first, followed by the actual output, but this is left to you as
an option.

All your programs shall take a file name of the input file as an input
parameter.

I tried to predict some of the situations when data quality may be of issue,
but there may be additional scenarios where lack of data may interfere with
your computations. In each case, please handle the data appropriately. Your
programs should not crash on ”inconvenient” data. Rather - if you cannot
compute something for a given state/date combination - ignore it and do
not include in your output.

There are common operations your programs may wind up performing. I
recommend developing a Python library of helper functions shared among
your four Python programs. You can submit it together with your other files.
With Java - there is less of a need for a common framework (only two tasks,
and they are more disparate), but if you want to build a class/interface to
work with both programs in this assignment, you are welcome to do so.

Each program/README file you submit must contain your name and cal
poly email address.

Submit the six programs you developed, and supplemental files (e.g., your
Python library) and a README file containing any additional information
I may need to know to compile and run your programs (e.g., the javac

compilation command, if it incorporates some parameters I may not be
immediately aware of).

You can develop Python code in Jupyter notebooks, but for this assign-
ment, I want you to submit standalone Python programs.

8



When testing your code, both Python and Java, assume that I will run it
on unix3.csc.calpoly.edu.

Use Python 3 syntax.

Use handin on unixN (e.g., unix3.csc.calpoly.edu) servers to submit
as follows:

$ handin dekhtyar lab01 <FILES>

Note: later we may move to handin on the ambari-head.csc.calpoly.edu,
but Lab 1 programs do not require the use of the cluster, so we will grade
them on the CSL servers.

Good Luck!

9


