
. .
Spring 2020 CSC/CPE 369: Database Systems Alexander Dekhtyar
. .

Lab 6: Hadoop Programs

Due date: Monday, March 18, 11:59pm.

Note: There will be minimal, if any grace period for this lab, as the
deadline has already been stretched very thin.

Lab Assignment

Assignment Preparation

This is an individual lab. I expect every person to complete it without
consulting others.

Overview

In this lab you will create a number of Hadoop MapReduce programs that
perform a variety of tasks on several different data inputs. The tasks are
separated into simple programs (Week 5 programs) and intricate programs
(Week 6 programs). Week 5 programs have the following features:

• The inputs are files with simple, easy-to-understand structure, with
each record stored in a single line.

• The map() and reduce() methods do not need to use any function-
ality beyond core Java libraries.

• The MapReduce job you are asked to implement is an example of a
specific type of a data-processing operation discussed in class.

Week 6 programs require more sophistication and may involve any of the
following:

• Implementing a join between multiple data files, or a self-join

1

• Use of distributed cache

• Use of combiners

• Multiple input files

• Multiple MapReduce stages

Datasets

Iowa Liquor Sales.

In addition to the iowa.csv, which will be used for Week 5 tasks, for Week
6 tasks you will use the counties-hadoop.json file. It contains multi-line
JSON objects. I am releasing an example of how this can be managed
using a third-party InputFormat class, but we won’t have time in class to
concentrate on this: use the provided example to make it work (we might
have a quick demo of multiline JSON management in one of the labs in Week
6). Please, note, counties-hadoop.json has been formatted to hadoop
processing of data, and it is NOT a valid JSON array. Rather, it is a list of
JSON objects with no punctuation in between.

The iowa.csv file has the following format:

The file represents a CSV version of some of the data from our Iowa liquor
sales database. Each line in the file is a single record in the format (in a
single line)

<Invoice>, <Store Number>, <Store County>, <Vendor Name>, <Item Number>, <Item Description>,

<Bottles Sold>, <Sale (Dollars)>

Here are a few sample lines from the input file:

’S24966600138’,2614,’Scott’,’Brown-Forman Corporation’,86817,’Southern Comfort Cherry’,2,29.56

’S24043700013’,2641,’Pottawattamie’,’Mccormick Distilling Company’,36903,’Mccormick Vodka’,96,163.2

’S22293800009’,4925,’Polk’,’Sazerac Co., Inc.’,64866,’Fireball Cinnamon Whiskey’,12,161.64

’S15881700017’,3976,’Iowa’,’Luxco-St Louis’,81208,’Paramount Peppermint Schnapps’,2,21.24

The counties.json file contains records in the following format:

{"id": <county Id>,

"county": <county Name>,

"population": <county population>}

Here is an example of a record:

{"id": 95,

"county": "Taylor",

"population": 6214 }

The two files are available in the hdfs /data/ directory.

2

Week 5 Programs

Program 1: vodkaratio.java

Write a Java Hadoop program that computes the following information for
each county:

• How many total bottles of alcohol were purchased

• The percentage of those bottles that is vodka (see below)

• The total amount of money paid for the purchased alcohol (add up
the Sale (Dollars) numbers

• The percentage of the money that went into purchasing vodka.

Name your program vodkaRatio.java

Notes: To determine if a purchase is of vodka search the Item description
column for appearance of the substring vodka in ANY capitalization. If
found - this is a vodka purchase. If not found - it is not a vodka purchase.

Program 2: Grouping and Aggregation

Create a MapReduce program named countySales.java that works as fol-
lows.

Input. The input to the program is the iowa.csv located in /data direc-
tory on HDFS. You all should have read access to this file.

Processing. The MapReduce job shall compute, for each county, (a) how
many total bottles were purchased, (b) the total amount of money the pur-
chased alcohol was worth, and (c) the average price per bottle.

Output. The reduce() method shall output the county name as the key,
and the triple 〈 number of purchased bottles, total amount of money spent
on purchasing alcohol, average price per bottle 〉 as the value.

Program 3: Inverting Construct a MapReduce program invertedIndex.java

that works as follows.

Input. The input to the program is the iowa.csv file introduced in the
description of Program 3.

3

Processing. For this task, you are interested in the Item Description

column of the input CSV file (sixth column in the file). Your program shall
split each Item Description into individual words (e.g., ’Southern Comfort
Cherry’ is split into ’Southern’, ’Comfort’ and ’Cherry’ words). For each
word found in the entire input (all Item Description values), your program
shall compute and output the following information:

• Number of unique occurrences of the word

• Number of unique counties that occur in the same record as the word

• Number of unique Item Description values in which the word occurs

Output. In the output, use the word as the key, and output a printable
object that consists of the three values specified above.

Week 6 Programs

Program 4: PerCapita.java

This is essentially one of your Midterm 1 MongoDB programs.

Compute per capita sales of alcohol to liquor stores by county. Output
the name of the county, the total sales in dollars of the alcohol to stores in
the county, and the per capita sales.

Hint. This is more or less a straightforward join. You have a choice
whether you want to use map-side or reduce-side join. Because another as-
signment will require a map-side join/use of distributed cache, I recommend
a reduce-side join for this problem. Use the om.alexholmes.json.mapreduce.MultiLineJsonInputFormat
class provided to you.

Program 5: HighestPerCapita.java

This is exactly one of your Midterm 1 MongoDB programs.

This program shall extend your PerCapita.java program and report the
county with the highest per capita alcohol purchases. Only the records
for the counties with the highest per capita alcohol purchases need to be
reported.

However, you must do this properly.

Problem 6: Correlation.java

We want to understand whether the number of sales of different types of
alcohol to different counties are correlated. For this assignment, we con-
centrate on two types of alcohol: vodka and rum. To determine whether a

4

specific sale documented in the iowa.csv file is a rum or a vodka sale, you
need to detect words "Rum", "rum", "Vodka", or "vodka" in the text of
the <Item Description> column. Ignore all other drink sales1.

For each county, compute two numbers: the total number of sales of rum
and the total number of sales of vodka (”total number of sales” = number of
unique receipts). With the two sets of sales, compute the Pearson correlation
between them, and output just the correlation.

Let rum = (r1, . . . , rn) and vodka = (v1, . . . , vn) where n is the number
of Iowa counties, and ri and vi are the number of sales of rum and vodka
repspectively for the same county for each i. Then, the Pearson correlation
between rum and vodka is found as follows:

pearson(rum, vodka) =

∑

n

i=1
(ri − µrum)(vi − µvodka)

√

∑

n

i=1
(ri − µrum)2

√

∑

n

i=1
(vi − µvodka)2

Here,

µrum =
1

n

∑

i=1

nri;µvodka =
1

n

n
∑

i=1

are the means of the rum and vodka vectors respectively. In your compu-
tations you can use a hardcoded value of n for the total number of counties
in Iowa (it is 99, I believe).

Hints. This requires multiple MapReduce cycles. You need a cycle to
compute histograms of rum and vodka purchases by county. You also need
to compute the means for the number of rum and number of vodka sales
in a single county. These means need to be used in the computation of the
Pearson correlation.

There are multiple different MapReduce architectures that will allow you
to perform this computation. Individual Map and Reduce functions are
going to be relatively straightforward. The complexity of this problem is
in proper organization of the MapReduce Jobs, and passing of information
from one job to another. You may find using a Distributed Cache convenient
at some point, although there are solutions that do not require it.

Problem 7: Dice.java

This problem involves different data: the Guttenberg dataset, a collection
of eleven2 text files containing most downloaded Project Guttenberg English-
language books during the week of Feburary 3–9, 2019. The books are found
in the /data/Guttenberg directory:

1That is - it is possible that a rum or a vodka do not have the words ”Rum”, ”rum”,

”Vodka”, or ”vodka” in their description. You can ignore such sales for the purposes of

this exercise.
2Sorry, I was shooting for ten, and overshot by one.

5

$ hdfs dfs -ls /data/Guttenberg

Found 11 items

-rw-r--r-- 3 hdfs hdfs 173595 2019-02-15 01:13 /data/Guttenberg/11-0.txt

-rw-r--r-- 3 hdfs hdfs 724726 2019-02-15 01:13 /data/Guttenberg/1342-0.txt

-rw-r--r-- 3 hdfs hdfs 51185 2019-02-15 01:13 /data/Guttenberg/1952-0.txt

-rw-r--r-- 3 hdfs hdfs 234041 2019-02-15 01:13 /data/Guttenberg/219-0.txt

-rw-r--r-- 3 hdfs hdfs 1276201 2019-02-15 01:13 /data/Guttenberg/2701-0.txt

-rw-r--r-- 3 hdfs hdfs 616320 2019-02-15 01:13 /data/Guttenberg/76-0.txt

-rw-r--r-- 3 hdfs hdfs 450783 2019-02-15 01:13 /data/Guttenberg/84-0.txt

-rw-r--r-- 3 hdfs hdfs 804335 2019-02-15 01:13 /data/Guttenberg/98-0.txt

-rw-r--r-- 3 hdfs hdfs 39700 2019-02-15 01:13 /data/Guttenberg/pg1080.txt

-rw-r--r-- 3 hdfs hdfs 594933 2019-02-15 01:13 /data/Guttenberg/pg1661.txt

-rw-r--r-- 3 hdfs hdfs 142384 2019-02-15 01:13 /data/Guttenberg/pg844.txt

We only have one task for this dataset, but it is relatively complex. We
want to compare the 11 books based on their word usage. For this partic-
ular exercise we choose a relatively straightforward and limited means of
comparison, but the overall architecture of your Hadoop program will allow
you to make such comparisons more complex in the future.

This is a multi-step problem, and is the only problem where, if you want

you are allowed to use multiple Java programs to solve. (This is because this
problem has a natural off-line/on-line computing components which can be
credibly separated into separate programs.) If you choose to use multiple
programs, Dice.java shall be your final program, and you can name your
other programs as you desire, and provide full instructions for compilation
and running in your README file.

First, you shall discover, for each of the documents the top 100 most
frequent words.

Second, for each pair of documents, you shall compute their Dice index
based on the top 100 most frequent words.

Given two sets D1 = {w1, . . . , wn} and D2 = {v1, . . . , vm}, the Dice index
dice(D1,D2) is defined as follows:

dice(D1,D2) =
2|D1 ∩D2|

n+m

The Dice index of 1 means that both sets coincide, the Dice index of 0
means that the two sets share no common elements (in our case - words).

The ouput of Dice.java shall be a collection of triples: the names of two
documents (you can use file names) and the value of the Dice coefficient.
Each pair needs to be considered only once so if you have <Document1,

Document2> already reported, there is no need to report <Document2, Document1>.

You are allowed to hardcode the names of the documents (filenames) in
your program, as well as to use 100 (number of most frequent words) as a
constant.

Hints. You need to solve three subproblems here. The first one is to
compute the list of 100 most common non-stopwords. This is a texbook

6

example of a top-K problem solved on top of your standard word count
problem. The second problem is: given two top 100 lists, compute Dice
coefficient. This requires intersection operation. In turn, intersection can
be viewed as a special case of a join. One key constraint is that you are not
allowed to simply send all 100 words from each document into your Reducer
and compute that intersection. This won’t work if you are computing the
Jaccard coefficient of two much larger sets. Instead, come up with an idea
for a reduce-side join, possibly followed by an aggregation to compute it.
In your computations, you are allowed to hardcode the use of 100 in the
denominator of the Dice coefficient. Your third problem is how to structure
the computation of the Dice coefficient for each pair of books. This is more of
a software architecture problem, but you are going to do developing software
that goes above and beyond a simple MapReduce job very often.

Submission

Use handin for submission. Submit the your Java programs, and a README

file with your name and any comments you need to make about your code.

Use the unixN.csc.calpoly.edu servers for submission.

Use the following command for the submission:

$ handin dekhtyar lab06 <files>

7

