
. .
Winter 2017 CSC/CPE 369: Database Systems Alexander Dekhtyar
. .

Lab 9: Hadoop Programs on Non-Synthetic Datasets

Due date: June 5, (Friday), 11:59pm.

Lab Assignment

Assignment Preparation

This is a team lab. Partner assignment is done in class and is, rightly or
wrongly, mostly random.

Overview

This is a research assignment. You are asked to implement three algorithms
in Hadoop. As part of your reporting for this lab you will have to submit
evidence that your programs correctly solve the problems.

For each problem, you are provided with one file representing a sample
dataset. Your goal is to implement a MapReduce solution to each problem
and compare its efficiency against a sequential solution (that you also need
to implement). To make the comparison more robust, you will conduct
a study of the run-time for each of your MapReduce programs vs. their
sequential counterparts, with input size being the independent variable. For
input sizes smaller than the size of the file provided to you, you can take
the appropriate subset of records. For input sizes larger than the size of the
file provided to you, you can duplicate rows, or synthesize additional data.

Problem 1

The first problem is a graph traversal problem. The input data provided to
you contains a list of edges for a large directed graph.

Slashdot dataset is one of a series of social network datasets available on
SNAP, the Stanford Network Analysis Package dataset collection of large

1

graphs/networks. The dataset we are using is the Slashdot social network,
November 2008, available from this URL:

http://snap.stanford.edu/data/soc-Slashdot0811.html

The dataset consists of a single file, available on HDSF as:

-rw-r--r-- 3 dekhtyar hdfs 10747200 2020-05-20 09:23 /data/soc-Slashdot0811.txt

Here are the first few lines of the data file:

Directed graph (each unordered pair of nodes is saved once): Slashdot0811.txt

Slashdot Zoo social network from Noveber 6 2008

Nodes: 77360 Edges: 905468

FromNodeId ToNodeId

0 0

0 1

0 2

0 3

Your code shall ignore the lines that start with the "#" character. The re-
maining lines contain edges of the directed graph for the Slashdot Zoo social
network. A directed edge (first, second) represents an directed interaction
from user first to user second.

Note: For this dataset, you may want to use NLineInputFormat to process
the data using multiple mapper instances (the size of the dataset is just
under the 128Meg limit on a single split).

The Task

We are interested in the reachability relationship between the nodes in the
Slashdot Zoo graph. Specifically, if we look at interactions between the
users, we want to find out if the ”Kevin Bacon” rule holds.

Write a Hadoop Java program which, for each node in the graph, finds
all other nodes in the graph reachable from it in six or fewer steps. Your
program then shall aggregate this information and report the following (as
a single line of output):

• total number of nodes in the graph

• average number of nodes reachable from a node in the graph in six
steps or fewer.

You will write a Hadoop implementation and a sequential implementation
that reads the file in from a local directory path, and produces the same
output. Name your Hadoop program SlashdotReach.java.

2

Problem 2

For this problem you will be working with the full Iowa Liquor Sales dataset,
as it existed on May 1, 2020. The dataset contains over 18 million individual
sales records and has exactly the same structure as the smaller JSON dataset
you have used in the past. That is - the CSV file contains the same attributes
and in the same order as the JSON data file with 10,000 records provided
to you.

The full structure of the dataset is described on the Iowa data web page:

https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy

The first line of the data file contains the list of attributes, all other lines
contain individual sales data.

The file is available in the /data directory on the hdfs:

-rw-r--r-- 3 dekhtyar hdfs 4510906811 2020-05-20 09:52 /data/Iowa_Liquor_Sales.csv

The Task

Due to the large size of the dataset, we restrict ourselves to a fairly simple
problem: for each year for which the sales data is available, report

• the total number of sales (invoices)

• the total volume of all purchases alcohol measured in liters (please
make sure that you take into account the number of bottles in each
invoice)

• the total amount of money that was paid for these purchases (this is
the aggregation over the sales in dollars column).

As with other tasks, you will create a MapReduce (Hadoop) implementa-
tion and a sequential implementation. Name your Hadoop program IowaLiquor.java.

Problem 3

Your third program will work with the US county-by-county COVID-19
statistics data from the NY Times github dataset that you used in prior
labs. As a reminder, each line of the county-by-county data file that you
will be using for this program looks as follows:

date,county,state,fips,cases,deaths

The May 19, 2020 version of this dataset has been uploaded to hdfs as a
file named us-covid-counties.csv:

-rw-r--r-- 3 dekhtyar hdfs 6247037 2020-05-20 10:13 /data/us-covid-counties.csv

3

The Task

For this dataset, we are setting up a problem that uses some of the advanced
features of Hadoop, such as the use of distributed cache and combiners.

Let us compare the spread of COVID in three locations in the state of
California: Central Coast the Bay Area, and Los Angeles area. For this
exercise, we assume the following:

• Central Coast is San Luis Obispo, Santa Barbara, and Monterey coun-
ties.

• The Bay Area is the city/county of San Francisco, and San Mateo,
Santa Clara, Alameda, and Contra Costa counties.

• The LA area is Los Angeles county and Orange county (we could do
more with the greater LA going into the Inland Empire, but LA and
Orange are enough).

We want to know how similar the infection trends are. We use Pearson
correlation (see Lab 6) as our similarity measure for a pair of vectors. Our
vectors will be the vectors of daily new cases for each of the three geographic
areas in California. Note that daily new case information is NOT available in
the input file, you need to compute daily new case numbers from consecutive
total cases numbers that are available to you.

So, your full task is as follows: your code shall filter out all data except for
the counties belonging to one of the geographic areas in California described
above. You then shall create, for each geographic area a vector of daily new
cases. Finally, you will output Pearson correlations for LA Area - Bay Area,
LA Area - Central Coast, and Central Coast - Bay Area comparisions of
these vectors.

In working on this problem you should be able to repurpose some of the
Lab 6 Pearson correlation coefficient computation code.

As before, you will compare a Hadoop implementation, which you will call
CovidCompare.java with a sequential implementation.

Experimental Design

For each program, your goal is to answer the same question - at what point
is it more advantegeous to solve the underlying problem using a Hadoop pro-
gram rather than the sequential program. To properly answer this question,
your programs have to run on input files of different sizes. Creating input
files of different sizes for this program is left up to you. We have enough
space both on the cluster and on hdfs for your experiments.

Essentially, you want to find an input size at which the overhead of running
Hadoop makes it less effective than the sequential program. Then you want
to keep on increasing the size of the input until you read the inflection point,

4

at which Hadoop solutions overtake sequential solutions. Finally, you want
to demonstrate how bad it can get for the sequential solution by comparing
the run time on the full dataset - or, on input data of even larger size if
necessary.

The bulk of organizing this work is left to you. We will keep other as-
signments in the upcoming weeks sufficiently light to enable you to devote
necessary time to this problem.

All your programs need to be instrumented with the code collecting timing
information. When running your experiments, you need to make sure that
the timing you get is not a fluke. You can do it, for example, by running the
same program on the same input multiple times and averaging the runtime.

Note: To make your life slightly easier, copies of all data files for this
assignment are also stored on local file system in the /usr/data directory:

dekhtyar@ambari-head:~$ cd /usr/data

dekhtyar@ambari-head:/usr/data$ ls -al

total 4421796

drwxr-xr-x 2 dekhtyar dekhtyar 4096 May 20 12:12 .

drwxr-xr-x 14 root root 4096 May 20 12:11 ..

-rw-r--r-- 1 dekhtyar dekhtyar 4510906811 May 20 12:12 Iowa_Liquor_Sales.csv

-rw-r--r-- 1 dekhtyar dekhtyar 10747200 May 20 12:12 soc-Slashdot0811.txt

-rw-r--r-- 1 dekhtyar dekhtyar 6247037 May 20 12:12 us-covid-counties.csv

Deliverables

The main thing you need to submit for this assignment is a written report
documenting your implementation of the Hadoop and sequential programs,
and the experiments you ran with them. Your report, for each problem
shall include a graph showing the change in runtime as the size of the data
increases. You can measure the size of the data as number of records, or as
overall file size, although number of records is probably better.

The report shall be word-processed, and submitted in PDF format. It shall
contain a title, list of authors with their email addresses, a brief introduction,
and a section detailing each of the three problems. Additionally, the report
shall contain your thoughts on the observed behavior of Hadoop vs. the
sequential implementation. Is Hadoop worth using?

In addition, you shall submit all code necessary to run each of your three
Hadoop implementations. You DO NOT need to submit any utlity code
to build timing graphs, and you do not need to submit your sequential
programs.

5

Submission

Submit your Java programs and all other files necessary to run your code.
Submit README file describing how to compile and run all your programs.
Submit Makefiles or compile-and-run bash scripts to compile and run your
programs is necessary. Submit your report.

All submitted files must contain your names on them.

Submit all your code in a single archive (zip or tar.gz).

Use handin on the CSL unix servers to submit as follows:

$ handin dekhtyar lab07 <FILES>

Good Luck!

6

