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Overview of the Course
Why Compute in a Distributed Environment?

Distributed Computing

Definition: Distributed Computing is an approach to computation in which
multiple (independent) computers or computing systems work on solving

the same problem within the same time frame!.

Distributed computing is facilitated via the means of:

e Distributed systems: collections of computers connected to each other
via a network running coordinated software.

e Distributed computing frameworks: implementations of programming
models that provide programmable interface to computing in a dis-
tributed way, but abstract away the distributed system organization
details.

In this course: we are interested in understanding how to use existing
distributed computing systems and frameworks to build efficient
solutions to typical problems that require distributed computing.

In CSC 469: you will learn how distributed systems are organized, and
will build a variety of them.

What this Means for the Course

1. We will largely view distributed systems and distributed computation
frameworks as black boxes.

This is a slightly rephrased definition borrowed from  Techpedia
(https://www.techopedia.com/definition /7 /distributed-computing-system).



2. We will not address the issues of distributed system design and ar-
chitecuture.

3. We will, for the most part, ignore the following eight Fallacies of dis-
tributed computing [1]:

) The network is reliable

) Latency is zero
) Bandwidth is infinite

(d) The network is secure
)
)
)
)

(e) Topolgy does not change

(f) There is one administrator
(g) Transport cost is zero

(h) The network is homogenous

(by ”ignore” I mean that if we need to assume any of these as part of
our problem-solving, we will do so. It is the task of the underlying im-
plementation of the distributed system/framework to deal with these
issues)

4. While this is a somewhat superfulous distinction, this is an ”applica-
tions development” course, not a ”systems” course.

Why Distributed Computing?

Question: With the amount of processing power available to use on a
single computing system, why do we need to build distributed systems and
facilitate distributed computing?

There are multiple answers to this question. The driving force of this
course is the following simple answer:

Big Data

For our purposes, we give the following definition:

Definition. We define Big Data as any data collection that is larger than the
storage capacity of a single computer system on which it is to be processed.

Data-centric View of Distributed Computing.

In this course we take a data-centric view of distributed computing. This
means that:

1. We view data processing (acquisition, managment, analysis, integra-
tion, transformation, exchange, visualization) as the chief purpose (rai-
son d’étre) for distributed systems.



2. We largely consider distributed computing solutions for ”pure” data
processing problems in the course.

The role of Big Data

The data-centric view of distributed computing explains why Big Data (de-
fined as above) is the answer to the ”Why?” question:

e A data collection that cannot fit the storage capacity of a single com-
puter system must be distributed across multiple independent systems.

e There is no shared memory? between multiple indpendent systems (as
inferred from the use of the term ”independent”).

e Individual systems storing the data collection will have immediate ac-
cess to portions of the entire data collection.

e Therefore, any computational task involving the data collection may
need to be executed on multiple systems.

So, what can we learn?

In this course we want to address the following two questions:

What common problems need to be solved in a distributed envi-
ronment? As stated above, we are concentrating largely on data process-
ing problems. Some of the types of such problems are:

1. Data indexing and retrieval (search) problems.
2. Data aggregation problems.

3. Data organization/partition problems.

4. Data integration/joining problems.

5. Data mining/machine learning.

How to solve these common problems using existing distributed
computing frameworks and distributed systems? In this course, we
will cover a number of frameworks that allow for distributed data processing:

1. Key-value stores. Sometimes referred to as NoSQL database managment
systems?, key-value stores are distributed computation engines that
evolved in the past few years to address the problems of indexing and
retrieval of very large data collections.

2 Although, as we will see in this course, there may be shared storage.
3Technically, key-value stores, and document stores that we will be looking at in this
class are a subset of all NoSQL DBMS.



2. MapReduce framework. The MapReduce distributed computation frame-
work partitions a data processing task into smaller steps that trans-
form data (a Map step) and aggregate it (a Reduce step). A MapReduce
computation framework abstracts the distributed nature of computa-
tions and allows developers to concentrate on the data manipulations
instead.

3. MapReduce extensions. MapReduce comes only with two types of data
manipulation procedures, a Map-style transformation procedure, and
a Reduce-style aggregation procedure. Some types of tasks may natu-
rally break down into components that are not a mapper or a reducer.
MapReduce extension frameworks add other types of user-created dis-
tributed data manipulation procedures.

4. MapReduce add-ons. These are higher-level frameworks built on top of
a MapReduce framework. These frameworks allow the user to express
their data processing needs in a declarative form, and they automati-
cally translate such declarative expressions into a MapReduce job.

In the class we will use specific embodiments for each category of dis-
tributed computation framework/system, but our overall stress is not on
learning how to deal with a specific implementation, but rather, learn the
general prinicples that are followed by all such implementations.

In the current offering of the course we will use

1. MongoDB as an example of a key-value and document store.
2. Hadoop as an example of a MapReduce framework.
3. Spark as an example of a MapReduce extension framework.

4. Pig or JAQL as an example of a MapReduce add-on. We won’t cover
them in this course. Spark made these add-ons less relevant.

How are Distributed Computations Different?

Even ignoring the fallacies of distributed computing, in order to create a
distributed solution, one needs deal with a lot of issues.

1. How to store data on multiple systems? What are the ways to partition
the data? Should there be any data replication?

2. How should one part of a distributed system communicate to other
parts?

3. How does one ensure consistency of data? How are data updates
handled?



4. Each compute node in the distributed system only sees a part of the
data. How does one assemble the full answer?

Any distributed computing framework must deal with these issues. Well-
designed frameworks abstract these issues for the developer.

But What About Databases?

There is one area of Computer Science that deals with data processing and
management: Database Systems.

Distributed Relational DBMS exist.

In fact, all major Relational DBMS can be set up in a distributed environ-
ment.

Question: How does this fit into this course?

Answer: We leave the study of Relational DBMS to CSC 365. Here are the
reasons:

e Distributed RDBMS differ from single-server RDBMS (or single-server
RDBMS configurations) at the system organization level - a distributed
RDBMS requires new components responsible for data distribution
and communication between individual servers. However, the key
means of communicating with a Distributed RDBMS is exactly the
same as the means of communicating with a single-server RDBMS:

SQL.

e (CSC 365 already covers the relational data model and SQL as part
of the course. Since these do not change, there is no need for us to

address these issues in CSC 369.

Having said this, this course will share one important component with
CSC 365: the use if task decomposition techniques to solve complex data
processing problems:

e Relational DBMS implement simple atomic data processing operations
that form Relational Algebra: selection, projection, cartesian product,
join, sort, union, difference, intersection, grouping and aggregation,
renaming.

e Data processing tasks on RDBMS platforms are done by express-
ing them in the form of a declarative statement in Structured Query
Language (SQL), which is the decomposed into a pipeline (tree) of
atomic relational algebra operations.

Distributed computing we will be studying in this course will largely behave
in a similar way. For each framework we study, we will do the following:



e Define a set of atomic operations on data that are appropriate for the
framework.

e Learn how to decompose our data processing tasks into ”pipelines”
consisting of these operations.

e Learn how to express these pipelines in the query languages/programming
languages used in the framework.

Bottomline: Welcome to a wicked database course without the databases.
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