
. .
Cal Poly CSC/CPE 369: Distributed Computations Alexander Dekhtyar
. .

Distributed Database Management Systems:
The CAP Theorem

Distributed Database Management Systems (DBMS)

Parallel DBMS: Database management systems that r8ely on the use of
multiple processing cores and shared main memory and second storage
to speed up data processing tasks.

Distributed DBMS: Database management systems that operate over a
collection of loosely coupled nodes that share no physical components.

Shared nothing architecture. The distributed DBMS model we con-
sider is shared nothing. Its properties are:

• Multiple compute nodes

• Each node has its own private main memory (RAM) buffer dedicated
data management tasks

• Each node has its own private secondary storage (disk storage) dedi-
cated to data storage

• Nodes cannot directly access main memory or secondary storage that
belongs to other nodes

• Nodes communicate to each other via messages

• The network is faulty: not all messages can arrive

Building Distributed DBMS. When building distributed DBMS, the
following challenges need to be addressed:

1. Data storage. How is data distributed among the private disk par-
titions of individual nodes? How is data accessed?

1



2. Transaction management. DBMS operate in terms of atomic trans-
actions: sets of operations that must either be all completed together,
or not performed at all if at least one operation fails. DBMS usu-
ally manage multiple transactions at a time via a concurrency control

mechanism (covered in detail in CSC 468). When two or more trans-
actions want to work with the same data, conflicts may arise. The
DBMS implement transaction scheduling, concurrency control, and
conflict resolution procedures that satisfy the so called ACID proper-
ties:

• A for Atomicity: either all operations in a transaction must be
performed, or none.

• C for Consistency: all data written to the database must be a
result of a valid operation (otherwise specified as: ”a transaction
that starts in a valid database state must end in a valid database
state”)

• I for Isolation: the outcomes of one transaction must not de-
pend on the outcomes of any other transaction (transactions run
in isolation, or ”concurrent execution of transactions leave the
database in the same state the would have been obtained if the
transactions were executed sequentially”).

• D for Durability: one the transaction has been committed, its
effects on the database state must persist even through a system
failure.

Non-distributed DBMS implement a lot of controls to support ACID

properties, but at the cost of efficiency. This cost rises significantly in
the presence of distributed data. Should ACID properties be retained
in distributed DBMS, and if yes - how? If not, which properties to
keep and how to gracefully abandon the remaining ones?

3. Fault-tolerance. How can a distributed DBMS deal with loss of
messages? How can it deal with loss of individual nodes?

4. Query processing. How is query execution distributed among the
nodes?

Consistency, Availability, Partition-Tolerance

In 20001, Eric Brewer[1] observed, that distributed systems2 have three de-
sired properties: consistency, availability, partition tolerance.

Consistency: is informally defined3 as

all nodes see the same data all the time.

Another way to define consistency is by saying that the DBMS returns the

correct response to each information request, where correct is defined w.r.t.
the semantics of the data.

1Actually, even earlier than that.
2Any distributed systems, not just distributed DBMS
3This is a different definition of ”consistency” than the one used for ”C” in ”ACID”.

There is a long story here.

2



Availability: is defined as

each request eventually receives a response.

While the presence of the word eventually appears to suggest that this is
not a very strong condition, it is nevertheless strong enough to cause trouble
in the presence of faulty networks.

Partition tolerance is defined as

the system is able to operate despite arbitrary loss of connectivity

between its parts.

This appears to be a ”strong” condition, because it asks the system to
tolerate faults of arbitrary scope.

The CAP Theorem

In 20004 Brewer presented the CAP Theorem formulated as follows[1]:

Theorem. In any shared data5 system you can have at most two of the
following properties: Consistency, Availability, Partition tolerance.

Later reviews of the meaning of the theorem made the following observa-
tion:

A distributed system must be tolerant to partitions.

Based on this observation, one may restate The CAP theorem as follows:

Theorem. In any shared data system, in order to ensure Partition Toler-
ance, either Availability or Consistency must be sacrificed.

Gilbert and Lynch[2] proved a version of the CAP theorem, in which the
notions of shared data system, availability, partition tolerance and consistency

have been formally defined (on one hand), but (on the other hand), the
proof appears to apply only to a subset of situations that can happen ”in
real life”.

Two Out of Three Ain’t Bad?

Brewer[1] outlined the properties of the three categories of systems:

Consistent Available (CA) systems: essentially non-distributed single-
node DBMS.

Consistent Partition-tolerant (CP) systems: distributed relational
databases that try to enforce ACID properties on the system. Network
communication protocols.

4Again, there is evidence that the actual conjecture was formulated as early as 1998.
5Brewer’s euphemism for a distributed system in this context.

3



Available Partition-tolerant (AP) systems: systems that do not need
a consistency guarantee to return a ”good” response. World Wide Web.
DNS.

As the new reading of the CAP theorem suggests, when building dis-
tributed DBMS we have a choice between CP and AP systems.

References

[1] Eric A. Brewer, (2000), Towards Robust Distributed Systems, Invited
Talk.

[2] S. Gilbert, N. Lynch (2002) Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-Tolerant Web Services, SIGACT

News 33(2): 51-59

4


