tal Poly CPE/CSC 369: Distributed Computations Alexander Dekhtyar.

Motivating Examples

Big Data Processing
Recall our definition of ”big data”:

Big Data is any data collection that is larger than the storage
capacity of a single computer system on which it is to be pro-
cessed.

Notes:

e This is a relativistic definition. What is ”big data” in one setting, will
not be "big data” in a different setting.

e This is a very permissive definition. A lot of data collections become
”big data” under this definition.

e This definition postulates that Big Data is not new - it existed always.
Having said this, we concentrate on modern Big Data processing tasks.

We define "modern” as “have emerged in the past 15-20 years” (roughly
since the advent of the world wide web).

There is a reason for defining "modern” this way. A lot of big data we
consider originated via the world wide web.

Specifying Examples
For each example, we specify three things:

1. Data: what data collection is used for processing.

2. Questions: what do the end users want to find out about the data.

3. Challenge: why achieving this is difficult and requires distributed
computing for success.

Note: the list of examples below is by far not exhaustive.

Most of the examples come from the workflow or data flow associated with
a core service provided by the world’s largest companies with web services.

Example 1: The ”Facebook” Example

Overview: With over 1 billion user accounts, Facebook is one of largest
Internet properties in the world. In this example we concentrate of Face-
book’s core service: display of the current account information (”Facebook
wall”) of a given user. This service needs to be delivered when

e a user logs onto their Facebook account

e a user clicks on a username of another user on one of Facebook’s pages

At each moment of time, it is safe to assume that tens of millions of users
are viewing their Facebook pages. The service to deliver the page must have
very low latency, and must scale to millions of simulteneous requests.

Data: Facebook user account data is a complex record that identifies a
variety of attributes associated with a user account: the full name of the
user, their location, status, preferred content settings; as well as contains
lists of their Friends, Followers, likes and wall posts (at the very least).
This information can be represented as a large complex object keyed to
the username on the account, or, to the unique internal id associated with
the account. The data collection is the over 1 billion of specially prepared
records keyed to unique user Id.

Task(s): The core task Facebook has to complete is specified as follows:

”Given a Facebook username, retrieve the user record and render it in HTML.

The latter part of the task ("render it in HTML”) is performed by the Face-
book web application, that knows how to format and display every single
piece of information contained in the user account object.

In this example, we concentrate on the first part of the task:

Given a Facebook username, retrieve the appropriate user record.

Challenge: Why is this task difficult? It appears a simple unique key
search, and there are a lot of ways to implement it efficiently. For example,
storing all keys together with pointers to the location of the user record on
disk in a hash table is a well-known approach.

Facebook has over 1 billion user account records and on the order of tens
of millions (per our guess) active users at any given time. The records
cannot be stored on a single computer system and they cannot be retrieved
efficiently from a single computer system.

In fact, even the hash table won’t fit the capacity of a single computer
system (and if it did, this solution would still not achieve the correct through-

put).

What to do: Store data in a distributed data store across multiple com-
puter systems. The distributed data store must solve well the problem of
finding a record by key.

Example 2: The ”Google” Example

Overview Google’s core business is web search. To support it, Google
indexes the billions of web pages (identified by their URL). When an end
user enters a search term in Google’s search field and clicks ”Enter”, Google
has less than 1 second to retrieve the first 10 results (and to figure out
roughly how many total results the search will yield).

Data: Google has an index of web pages - with the content of each web
page keyed to the URL of the page. Additionally, Google has an inverted
index of the web pages: for each word deemed an appropriate search term,
Google stores the list of URLs it occurs in.

Tasks: There are a few tasks we can identify here.

e Task 1: Create an inverted index during the web crawl. Even ignoring
the fact that the web crawler itself needs to be run in a distributed
way (otherwise it will never finish its work), we can view this problem
as follows: a constant stream of (URL, HTML text) pairs is being
sent to a process that needs to build an inverted index.

e Task 2: Information retrieval: given a collection of search terms,
generate a list of documents that contain all of them.

Challenge: The challenge, again, is the sheer amount of data. According
to [1], in early 2013:

e Google indexed around 30 trillion individual web pages.

e Google’s single index of these pages occupies around 1000 Terabytes
(just under a Petabyte) of space.

e Google goes through the process of rebuilding the index multiple times
each month.

Analysis: The inverted index construction problem is basically a problem
of data transformation. The keyword search problem is a combination of
search (see the "Facebook” example) and list merge tasks.

Example 3: The ”Twitter” Example

Overview: Twitter’s core service is showing short messages written by
people to their followers and to the world. According to [2], Twitter handles
on the order of hundreds of millions of accounts, with a total of 300 billion
tweets over the lifetime of the service, and with current velocity of about
500 million individual tweets per day.

Data: Twitter has two core data collections: a list of users (over 550
million accounts[2]), and the list of tweets, keyed to the userid as well as to
the time stamp.

Task: Given a user name, put together a list of most recent tweets to push
to a Twitter delivery platform (web, mobile, etc.)

Challenge: This is a selection/filtering operation that also requires a sort
by the publication time. Storing data in sorted order by publication time is
not a difficult thing to do (it is basically a list with a push insertion method),
howewver if all or most retrieval commands demand the most recent data,
storing all most recent data on a single system is a bad idea.

Analysis: The core challenge internally is to make sure that the workload
is balanced. This means that a better organization is to store tweets by
user name (i.e., all tweets of the same individual are stored in the same disk
space) in reverse chronological order. This reduces the problem to that from
the ”Facebook” example - find user account among the millions of account
quickly and collect the most recent tweet for it.

Example 4: The ”Census” Example.

Overview: This example actually comes from the 1980s, when Herman
Hollerith built an electric punch-card tabulating machine for the US Census.

Data: Records about individuals. Each census record contains informa-
tion about one person: name, city, county, state the live in, their gender,
date of birth, race and and national origin, creed, and so on - answers to all
the census questions.

Task: Tabulate the data in a way that allows to obtain fast counts of
people in each category (men/women, people born in each year, people living
in each city and state, and so on).

Analysis: In 1890, the census collected information about over 60 million
individuals. Without a ready data storage, tabulating all this data by hand
would have taken tens of years. Instead, Herman Hollerith built a punch
card recording/reading/tabulating system that collected information and
automatically categorized it. It took about two years to punch data about
60+ million people onto the punch cards, but all tabulation was performed
automatically by running stacks of punch cards through the tabulating ma-
chines and adding up the numbers.

Challenge: Assuming that in modern times all records are already stored
electornically, we are still looking at a collection of hundreds of millions of
records over which a variety of grouping (break the records into groups based
on values of one or more attributes) and aggregation operations (count, sum,
average) need to be run.

Because the data is stored over a large number of computer systems, a
distributed framework solving this problem needs to put together an effi-
cient procedure for both grouping the data (note that with multiple ways
in which the data can be grouped, it is impossible to store the data in
those groups without some massive data duplication) and aggregation over
multiple compute nodes.

Example 5: The ”Bioinformatics” Example

Overview: Modern DNA sequencing methods (otherwise known as ” Next-
Generation Sequencing” or "NGS”) work roughly as follows: a ”cocktail” of
DNA molecule fragments is analyzed, and around 500,000 relatively short
DNA fragments are returned on each sequencing run.

Data: A large collection (millions, tens of millions, hundreds of millions)
of DNA fragments. Each fragment is a short (about 2Kb) string in an
{A,T,C,G} alphabet.

Task: Merge DNA fragments into longer DNA sequences. To do so, for
each pair of DNA sequences an alignment must be performed to determine
if an end of one sequence matches an end of another sequence.

Challenge: With about 1 million DNA fragments, comparing every pair
to each other creates 1 trillion pairwise comparisons. So, even if the data
can be put under control (1 million DNA fragments can be stored on a single
disk), the computation cannot.

Analysis: This is an example of a join problem - given a data collection
(or two separate collections), pair up the data items in the collection based
on some join condition. In the case of DNA sequence assembly, the join
condition is something like ” 10 or more characters on the end of one sequence
match exactly 10 or more characters at the beginning of the other sequence”.

Common Themes
The examples above share some features.

1. The task is relatively simple in nature and is easy to perform on small
datasets.

2. The task is expected to finish in reasonable time. In some cases "rea-
sonable time” is defined as "under 1 second”, in other cases it is on the
order of minutes or hours, but in all cases, a single system performing
the task will fail to do it on time.

3. In many tasks the data may be complex (a large record), but very few
of its fields get used (e.g., only the Id is needed to complete the task,
everything else can be viewed as a black box).

References

[1] John Koetsier, (2013) How Google searches 30 trillion web
pages, 100 Dbillion times a month, Venturebeat blog, March
1, 2013, http://venturebeat.com/2013/03/01/how-google-searches-30-
trillion-web-pages-100-billion-times-a-month//.

[2] Craig Smith, (2015), By The Numbers: 170+ Amazing Twitter Statis-
tics, DMR blog, http://expandedramblings.com/index.php/march-2013-
by-the-numbers-a-few-amazing-twitter-stats/, December 15, 2015.

