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Introduction to MongoDB

Overview

MongoDB is a Database Management System that provides support of stor-
age, management and retrieval of documents.

Often, MongoDB is classified as a ”Document Store”.

It also belongs to the category of NoSQL DBMS, as its querying facilities
are not declarative.

We use MongoDB in its reduced capability as a glorified Key-Value store.

Documents

The objects MongoDB stores are called documents.

Syntactically, MongoDB documents are same as JSON documents.

<document> ::= ’{’ <pair>* ’}’

<pair> ::= <key> ’:’ <value>

<key>::= <String>

<value> = <document> |

<array> |

true | false | null |

<SimpleValue>

<SimpleValue> ::= <Number>|<String> | ...

Unique Identification. Each document stored by MongoDB contains a
unique ID stored in a special key-value pair, with the key " id" and called
objectid. The objectid can be generated in one of two ways:

1. Explicitly: The document to be stored in MongoDB includes the
" id": <value> key-value pair. In this case, the document will use
the value as the objectid.
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2. Implicitly: If the document does not include the " id" key, then
MongoDB generates a unique objectId value, and appends

" id": objectid

pair to the document.

Representing ”Pure” Key-Value Stores in MongoDB

We can represent ”pure” Key-Value stores in MongoDB in a number of ways.

Key-Value Store as a Single Document. A single JSON document
is essentially a map/dictionary from the attribute names to their values.
Therefore, a single MongoDB document is essentially capable of representing
a whole Key-Value store.

Example. The following JSON document

{ "1": "a",

"2": "b",

"3": "alpha"

}

represents a 1 → ”a”, 2 → ”b”, 3 → ”alpha” mapping.

This way of representing a mapping is compact, but as you will see, the
ADT put operation is going to translate to MongoDB update command,
rather than the insert command.

Key-Value Store as a Collection. MongoDB supports multiple databases
and collections (see below). A MongoDB Collection is a group of MongoDB

documents stored under the same namespace. The following trasformation
allows us to store arbitrary key-value pairs as individual objects in a single
collection.

Given a key-value pair key: value, create a MongoDB docu-
ment

{ "_id": key,

"value": value

}

and store this object in the collection.

Example. The dictionary from the example above can be represented as
the following collection of MongoDB documents:
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{"_id": 1,

"value": "a"

},

{"_id": 2,

"value": "b"

},

{"_id": 3,

"value": "alpha"

}

MongoDB Data Organization

MongoDB organizes data into databases, collections. Each represents a spe-
cific namespace.

Databases. Databases are the top level of MongoDB namespace hierarchy.
At each moment of time, MongoDB can support multiple databases.

Databases are uniquely identified by their names.

Databases are created dynamically. There is no ”CREATE DATABASE”
command, but if a user requests to work with a non-existing database, a
new empty database under that name is created.

Collections. Each database organizes documents into collections. Each
collection within a database is identified by a unique name. Each collection
is a set of MongoDB documents grouped logically by the user. Collections
form namespaces within databases - all access to data in the collection goes
through its name:

db.<CollectionName>.<operation>

For example, the syntax for an operation of getting a list of all documents
in the collection (the find() operation) "storage" will look as follows:

db.storage.find()

Collection names can include subnamespaces. For example storage.today
is a valid collection name. This collection is different from storage (i.e., it
is not part of it).
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MongoDB Functionality

Note: The rest of this document is current for version V4.2.3 of MongoDB.
There are some important changes from earlier versions, so previous versions
of this document may no longer contain correct information.

MondoDB functionality can be accessed in three different ways:

1. Interactive session with a MongoDB shell.

2. Batch processing of JavaScript scripts by the MongoDB shell.

3. Connection to the MongoDB server via a MongoDB connectivity driver

for a specific programming language.

MongoDB Shell

MongoDB runs on a system as a server process. The default MongoDB port
is 27017, although some instances of the MongoDB server can override that.

Note: On the ambari-head.csc.calpoly.edu system MongoDB runs on the
default port 27017. You will be contacting MongoDB directly from ambari-

head.csc.calpoly.edu, so you will be using "localhost" as the server address.

The command to start the MongoDB shell is

$ mongo

Note: On ambari-head, the mongo executable is in /usr/bin.

Authentification

Our MongoDB server is set up to authentificate users. MongoDB’s authen-
tification procedures are unusual.

Authentification Databases. User accounts in MongoDB are pairs
〈database,username 〉. The database part of the account is known as the
authentification database. In order to perform the authentification operation
for username, one must switch to the authentification database for this user
name.

Authentification procedure. The authentification itself is performed
using the

db.auth(<username>,<password>)

command. Here, <username> is the username that gets authenticated
against the database and <password> is the password.
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Entering Passwords. Previous versions of MongoDB required entry of
passwords into all commands that have them as parameters as clear text.
In Version 4.2, this issue has been fixed. With any command expecting a
password in interactive mode, you can replace the clear text password with
a passwordPrompt() function call. The effect of this call is to allow you to
enter the password interactively without displaying it. This looks as follows:

csc369Replicas:PRIMARY> use csc369users

switched to db csc369users

csc369Replicas:PRIMARY> db.auth("alexander",passwordPrompt())

Enter password:

1

csc369Replicas:PRIMARY>

The 1 response after the password is entered is MongoDB’s confirmation
that the authentication was successful1.

Roles. MongoDB uses role-based access control to data. Each authenti-
cated account may have one of the following permissions on a given database:

Permission

read

readWrite

dbAdmin

dbOwner

userAdmin

dbAdmin role grants permission to work with the database meta data.

userAdmin role grants permission to create users in the given database
and assign them roles.

dbOwner permission grants readWrite, dbAdmin and userAdmin permis-
sions on the database.

There are additional default and user-created administrative permissions
available in MongoDB.

Getting Started.

MongoDB accepts the following types of commands:

1. Javascript processing instructions. MongoDB shell is a complete JavaScript
interpreter.

2. Shell commands. There is a set of shell commands that help navigate
and administrate the system.

1Previous versions of MongoDB responded with a verbose acknowledgement, but this

is no longer practiced.
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3. Database and collection manipulations. These access the data stored in
MongoDB. Syntactically, these commands start with db. and have the
form of a method/function call.

Basic shell commands. Five commands are useful from the very begin-
ning:

Command Meaning

help Display help message. Shows what types of help can be requested.
show dbs Produces a list of available databases.
use <dbName> Changes the active database.
show collections Lists all collections in the active database.
exit Quit the MongoDB shell.

CRUD. All actual data access operations are conducted through the

db.<collection>.<operation>

syntax. To see the full list of Collection-level commands, type

> db.mycoll.help()

Of the various commands, the following are of immediate interest:

Command Meaning

db.<collection>.insert(<document>) Puts <document> into a given <collection>.
db.<collection>.find() Shows the list of documents in the collection.
db.<collection>.remove(<patternDoc>) removes documents from the collection that match the

pattern specified in <patternDoc>

db.<collection>.update(<patternDoc>, <document>) find the document that satisfies the pattern specified
in <paternDoc> and replace it with <document>

Inserting new documents

Inserting one document object at a time. The basic format of the
db.<collection>.insert() command is

db.<collection>.insert(<object>}

This command inserts one object <object> into the specified <collection>.

Note: If <object> does not contain an " id" key, then the key-value pair

"_id": new ObjectId()

will be added to <object>.
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Bulk Insert. The insert command can be used to bulk-insert objects.
For this, the argument of the insert command needs to change to a JSON
(document) array. The format of the command is

db.collection.insert([<object>,...,<object>])

Example. Starting with an empty collection ex1, the following are the
effects of a single object insert and a bulk insert.

> db.ex1.find()

> db.ex1.insert({

... "name":"Bob",

... "years": 3})

WriteResult({ "nInserted" : 1 })

> db.ex1.find()

{ "_id" : ObjectId("569c3f7fd37cd1c58b142632"), "name" : "Bob", "years" : 3 }

> db.ex1.insert({"_id":"Alice", "name":"Alice", "years": 21})

WriteResult({ "nInserted" : 1 })

> db.ex1.find()

{ "_id" : ObjectId("569c3f7fd37cd1c58b142632"), "name" : "Bob", "years" : 3 }

{ "_id" : "Alice", "name" : "Alice", "years" : 21 }

> db.ex1.insert([{"name": "Sue", "years": 4},

... {"name":"Will", "years": 12},

... {"name":"Hank", "lastseen":"yesterday"} ])

BulkWriteResult({

"writeErrors" : [ ],

"writeConcernErrors" : [ ],

"nInserted" : 3,

"nUpserted" : 0,

"nMatched" : 0,

"nModified" : 0,

"nRemoved" : 0,

"upserted" : [ ]

})

> db.ex1.find()

{ "_id" : ObjectId("569c3f7fd37cd1c58b142632"), "name" : "Bob", "years" : 3 }

{ "_id" : "Alice", "name" : "Alice", "years" : 21 }

{ "_id" : ObjectId("569c4019d37cd1c58b142633"), "name" : "Sue", "years" : 4 }

{ "_id" : ObjectId("569c4019d37cd1c58b142634"), "name" : "Will", "years" : 12 }

{ "_id" : ObjectId("569c4019d37cd1c58b142635"), "name" : "Hank", "lastseen" : "yesterday" }

>

Removing Documents and Collections

db.<collection>.remove command can be used to remove a full collection,
a single document, and a group of documents that match a specific query.

Removing full collection. The
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db.<collection>.remove({})

command an empty document as an argument removes all documents from
the collection <collection>.

Removing documents. The remove command takes one input parame-
ter: a query document.

db.<collection>.remove(<queryDocument>)

This command searches the collection <collection> for all documents
that match <queryDocument>. All these documents are removed from <collection>.
See the description of the find() command for the syntax of <queryDocument>.

Example. Here are some examples of the work of the remove command.

> db.ex1.find()

{ "_id" : ObjectId("569c3f7fd37cd1c58b142632"), "name" : "Bob", "years" : 3 }

{ "_id" : "Alice", "name" : "Alice", "years" : 21 }

{ "_id" : ObjectId("569c4019d37cd1c58b142633"), "name" : "Sue", "years" : 4 }

{ "_id" : ObjectId("569c4019d37cd1c58b142634"), "name" : "Will", "years" : 12 }

{ "_id" : ObjectId("569c4019d37cd1c58b142635"), "name" : "Hank", "lastseen" : "yesterday" }

> // deleting a single document

> db.ex1.remove({"_id":"Alice"})

WriteResult({ "nRemoved" : 1 })

> db.ex1.find()

{ "_id" : ObjectId("569c3f7fd37cd1c58b142632"), "name" : "Bob", "years" : 3 }

{ "_id" : ObjectId("569c4019d37cd1c58b142633"), "name" : "Sue", "years" : 4 }

{ "_id" : ObjectId("569c4019d37cd1c58b142634"), "name" : "Will", "years" : 12 }

{ "_id" : ObjectId("569c4019d37cd1c58b142635"), "name" : "Hank", "lastseen" : "yesterday" }

> // deleting multiple documents

> db.ex1.remove({"years": {"$lt" : 5}})

WriteResult({ "nRemoved" : 2 })

> db.ex1.find()

{ "_id" : ObjectId("569c45fdd37cd1c58b142638"), "name" : "Will", "years" : 12 }

{ "_id" : ObjectId("569c45fdd37cd1c58b142639"), "name" : "Hank", "lastseen" : "yesterday" }

> // deleting all documents in a collection

> db.ex1.remove({})

WriteResult({ "nRemoved" : 2 })

> db.ex1.find()

>

Querying Documents in a Collection

TheMongoDB query command is db.<collection>.find(<queryDocument>,
<projectionDocument>).

A <queryDocument> is a JSON document describing the specific search
parameters that find must use when conducting the search.
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A <projectionDocument> is a JSON document specifying what part of
a document matching the query needs to be retrieved. This parameter is
optional. If missing, full documents matching the query are returned.

List all documents in a collection. The find() command without the
input parameter lists all objects in a given collection:

db.<collection>.find()

Query Documents

MongoDB allows for a lot of different types of queries through the use of the
query documents.

Query docuements for exact match. To retrieve documents where
there is a desired top-level key-value pair key: value, use the following
Query document:

{ key: value}

Example. Consider the following collection ex2:

> db.ex2.find()

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 7, "course" : "CSC 102", "roster" : 94, "sections" : 3 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }

To extract information about CSC 365, we construct the following query:

> db.ex2.find({"course":"CSC 365"})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

To find the courses that have exactly 34 students, we can ask:

> db.ex2.find({"roster":34})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

Comparisons. MongoDB uses the "$<keyword>" syntax for keywords ex-
pressing a variety of different requests. The following keywords are reserved
for comparison operators:
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Operator MongoDB keyword

= "$eq"

6= "$ne"

< "$lt"

≤ "$lte"

> "$ge"

≥ "$gte"

To use comparisons in a query, prepare the query document according to
the following template:

{<key> : {"$comparison" : <value>}}

For example, to find all classes with fewer than 40 students in them, we
can issue the following query:

> db.ex2.find({"roster": {"$lt": 40}})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }

Comparisons on a single key can be combined:

> db.ex2.find({"roster": {"$lt": 40, "$gt": 33}})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

Boolean Combinations. Conjunction, disjunction and negation are han-
dled via conditional keywords. Some special cases may also be handled in a
separate way. The relevant keywords are:

Operator Operation MongoDB keyword

& conjunction "$and"

∨ disjunction "$or"

∈ belongs to "$in"

6∈ does not belong to "$nin"

¬ negation "$not"

1. Conjunction. Use multiple key:value pairs in a single query for a
conjunctive query:

> db.ex2.find({"roster":34, "name":"Data Mining"})

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

Alternatively, use the built-in keyword "$and" as follows:

{"$and": [ <conjunct1>,...,<conjunctN>]}

Here, <conjunct1>,..., <conjunctN> are query documents specify-
ing each conjunct.

For example, the same query as above can be restated as follows:
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> db.ex2.find({"$and": [{"roster":34},{"course":"CSC 466"}]})

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

2. Disjunction. Arbitrary disjunction can be represented using the fol-
lowing query document template:

{"$or" : [<option1>, <option2>,...,<optionN>]}

Here, "$or" is a disjunction keyword, and <option1>,...,<optionN>

are query documents specifying the disjuncts.

The following example retrieves CSC 365 and CSC 369 records:

> db.ex2.find({"$or": [{"course":"CSC 365"}, {"course": "CSC 369"}]})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

In this query, we ask for either a CSC 365 record or records of all
courses with more than 50 students in them

> db.ex2.find({"$or": [{"course": "CSC 365"}, {"roster": {"$gt": 50}}]})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 7, "course" : "CSC 102", "roster" : 94, "sections" : 3 }

A simplified version of disjunction, ranging over multiple values of a
single key (e.g., ”find all courses with either 34 or 100 students”) can
be encoded using an "$in" keyword. The query document shall look
like this:

{<key> : {"$in": [<value1>,..., <valueN>]}}

The query mentioned above can be encoded as follows:

> db.ex2.find({"roster": {"$in": [34, 100]}})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

It is also possible to query for values to not be included in the list, by
using the "$nin" keyword instead of "$in".

> db.ex2.find({"roster": {"$nin": [34, 100]}})

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 7, "course" : "CSC 102", "roster" : 94, "sections" : 3 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }
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3. Negation. Negation must be applied to an operation within a query
document. The negation keyword is "$not". The syntax for negation
is as follows:

{<key> : {"$not" : {"$operation" : <document>}}}

For example, finding all courses that do not have 3 sections can be
done as follows:

> db.ex2.find({"sections": {"$not" : {"$eq": 3}}})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }

Note: Notice the semantics of this query. The query returns both:

• documents that do not have a key-value pair for the specified key;

• documents that have a key-value pair for the specified key, with
the value not equal to the value specified in the query document.

The "db.ex2.find("sections": "$ne": 3)" returns the same re-
sult, so, broadly speaking, this is how MongoDB handles inequality.

Matching null The behavior of the negation is explained by how match-
ing of null values is handled.

The query document

{<key>: null}

matches:

• All documents in the collection that contain an explicit key-value pair
<key>: null;

• All documents in the collection that do not contain a key-value pair
for <key>.

Example. Consider the collection ex2 used in the examples above, en-
hanced with two more objects:

> db.ex2.insert({"_id":9, "course": "CSC 400", "roster": null, "sections": 8})

WriteResult({ "nInserted" : 1 })

> db.ex2.insert({"_id":10, "course": "CSC 103", "sections": 8})

WriteResult({ "nInserted" : 1 })

> db.ex2.find()

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

12



{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 7, "course" : "CSC 102", "roster" : 94, "sections" : 3 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }

{ "_id" : 9, "course" : "CSC 400", "roster" : null, "sections" : 8 }

{ "_id" : 10, "course" : "CSC 103", "sections" : 8 }

Asking for all courses with "roster" set to null yields the following
response:

> db.ex2.find({"roster":null})

{ "_id" : 9, "course" : "CSC 400", "roster" : null, "sections" : 8 }

{ "_id" : 10, "course" : "CSC 103", "sections" : 8 }

Querying Arrays

Querying arrays has interesting semantics in MongoDB.

Let {"key": [ value1, value2,..., valueN]} be a JSON object.

A query document "key": value will match the JSON ob-
ject above if value is equal to one of the values value1,...,
valueN.

At the same time:

A query document "key": [v1, ..., vM] matches the JSON
object above, if M = N and, value1 = v1, value2 = v2,. . . ,
valueN = vM.

Example. Consider the following collection ex3:

> db.ex3.find()

{ "_id" : 1, "name" : "Joe", "courses" : [ 365, 369, 466 ] }

{ "_id" : 2, "name" : "Paula", "courses" : [ 471, 365 ] }

{ "_id" : 3, "name" : "Vanda", "courses" : 365 }

{ "_id" : 4, "name" : "Morris", "courses" : [ 102, 103, 225, 357 ] }

Consider the four queries shown below. The first one finds all students
who took CSC 365. The second one shows that no student took exactly CSC
365 and CSC 369. The third query matches nothing, because the courses
are in the wrong order (arrays are ordered). Finally, the last query discovers
the person who took CSC 471 and CSC 365 (in the specified order).

> db.ex3.find({"courses": 365})

{ "_id" : 1, "name" : "Joe", "courses" : [ 365, 369, 466 ] }

{ "_id" : 2, "name" : "Paula", "courses" : [ 471, 365 ] }

{ "_id" : 3, "name" : "Vanda", "courses" : 365 }

> db.ex3.find({"courses": [365, 369]})

> db.ex3.find({"courses": [365, 471]})

> db.ex3.find({"courses": [471, 365]})

{ "_id" : 2, "name" : "Paula", "courses" : [ 471, 365 ] }
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Accessing individual array elements. To access individual array el-
ements one can construct the query document according to the following
template:

{ "<key>.N" : <value>}

For example, the following query retrieves the information about students
who list CSC 369 as their second course:

> db.ex3.find({"courses.1" : 369} )

{ "_id" : 1, "name" : "Joe", "courses" : [ 365, 369, 466 ] }

Accessing Array Size. The keyword "$size" in a query document eval-
uates to the size (number of elements) in the array stored under a given key.
The following syntax allows to query for arrays of certain sizes:

{<key> : {"$size": Number}}

For example, the following query retrieves records of all students taking
exactly two courses. Note also, that no conditionals/comparison operators
can be used together with "$size": the second query, ostensible asking for
all records with more the two courses returns a syntax error.

> db.ex3.find({"courses": {"$size": 2}})

{ "_id" : 2, "name" : "Paula", "courses" : [ 471, 365 ] }

> db.ex3.find({"courses": {"$size": {"$gt": 2}}})

Error: error: {

"waitedMS" : NumberLong(0),

"ok" : 0,

"errmsg" : "$size needs a number",

"code" : 2

}

Array elements and conditionals. A query document of the form

{<key>: {"$gt": value1, "$lt": value2}}

matches the following types of documents:

• a document that has a key-value pair for key <key> with a simple value
val that is greater than value1 and smaller than value2.

• a document that has a key-value pair for key <key> with an array value
that has values val1 and val2 (possibly the same, but not required
to be), such that

val1 > value1 and val2 < value2

We can illustrate this behavior on the example of the following query:

> db.ex3.find({"courses": {"$gt": 370, "$lt": 400}})

{ "_id" : 1, "name" : "Joe", "courses" : [ 365, 369, 466 ] }

{ "_id" : 2, "name" : "Paula", "courses" : [ 471, 365 ] }
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Document Queries for Matching Embedded Documents

When a value for a specific key in a document is a JSON document itself,
we can query in two different ways.

1. Full match queries. A query document can be constructed to match
exactly the contents of the embedded document. The syntax is similar
to the standard query document syntax:

{ "<key>": { "<ekey1>": value1, ..., "<ekeyN>": valueN}}

This query will match exactly a document that has a key-value pair
with the key <key>, whose value is an embedded object

{ "<ekey1>": value1,

...

"<ekeyN>": valueN

}

2. Partial match queries. Often, rather than quering for the full con-
tents of an object, we want to achieve the same result as with top-level
key-value pairs: match and object if it contains a specific key-value
pair. This can be done using the following syntax:

{ "<key>.<ekey>": value}

This query document matches documents that have a key-value pair
with the key <key> whose value is an embedded document, which has
a key-value pair <ekey>: value.

Some examples illustrating it are below. We use the following collection
ex4 (indentation added for clarity):

> db.ex4.find()

{ "_id" : 1, "person" : { "first" : "Bob", "last" : "Smith" }, "age" : 37 }

{ "_id" : 2, "person" : { "first" : "Anna", "last" : "McCarthy" },

"occupation" : "medical" }

{ "_id" : 3, "person" : { "first" : "Alice", "last" : "Brown", "middlie" : "Matilda" },

"email" : "amb456@gmail.com" }

Querying for both first and last name of Bob Smith returns his record.
Querying in a ”standard” way for just ”Bob” returns nothing. Using the
dot.notation we can retrieve Bob’s record just using his first name.

> db.ex4.find({"person": {"first": "Bob"}})

> db.ex4.find({"person": {"first": "Bob", "last":"Smith" }})

{ "_id" : 1, "person" : { "first" : "Bob", "last" : "Smith" }, "age" : 37 }

> db.ex4.find({"person.first": "Bob"})

{ "_id" : 1, "person" : { "first" : "Bob", "last" : "Smith" }, "age" : 37 }
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Projection operation

In relational databases, projection operation allows for the return of only the
relevant parts of the database tables. MongoDB employs the second (op-
tional) argument of the find() command to restrict the retrieved content.

Returning the exact objects stored in the collections. When db.<collection>.find()
is invoked without the second parameter, the result of the query will show
the full contents of all retrieved objects.

Limiting the retrieved content. To limit the information returned for
each retrieved document, use the second parameter of the find() command.
We refer to this parameter as the Projection document.

Projection Documents. There are two types of projection actions al-
lowed in projection documents: an inclusion action and an exclusion action.

1. Inclusions. To specify the list of key-value pairs to be included in
the output, construct the following projection document:

{"<key1>": 1,

"<key2>": 1,

...

"<keyN>": 1

}

If this projection document is specified as the second parameter of
a find() command, all retrieved objects will only contain key-value
pairs with keys coming from the list "<key1>",..., "<keyN>". All
other key-value pairs will not be placed in the output.

2. Exclusions. To specify the list of key-value pairs to be excluded in
the output, construct the following projection document:

{"<key1>": 0,

"<key2>": 0,

...

"<keyN>": 0

}

If this projection document is specified as the second parameter of
a find() command, all retrieved objects will only contain key-value
pairs with keys not found in the list "<key1>",..., "<keyN>". All
other key-value pairs will be placed in the output.
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Example. Using our collection ex2, we can test projections on a few
queries. The next to last query shows that mixing the exclusion and inclusion
in a single projections document is not allowed. The only exception from this
rule is the " id" key, which can be excluded anytime (see the last query).

> db.ex2.find({"roster": 34}, {"course": 1})

{ "_id" : 1, "course" : "CSC 365" }

{ "_id" : 3, "course" : "CSC 466" }

> db.ex2.find({"roster": 34}, {"course": 0})

{ "_id" : 1, "roster" : 34 }

{ "_id" : 3, "name" : "Data Mining", "roster" : 34 }

> db.ex2.find({"course": {"$in": ["CSC 365", "CSC 466" ]}}, {"course": 1, "name": 1})

{ "_id" : 1, "course" : "CSC 365" }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining" }

> db.ex2.find({"course": {"$in": ["CSC 365", "CSC 466" ]}}, {"course": 0, "name": 0})

{ "_id" : 1, "roster" : 34 }

{ "_id" : 3, "roster" : 34 }

> db.ex2.find({"course": {"$in": ["CSC 365", "CSC 466" ]}}, {"course": 0, "name": 1})

Error: error: {

"waitedMS" : NumberLong(0),

"ok" : 0,

"errmsg" : "Projection cannot have a mix of inclusion and exclusion.",

"code" : 2

}

> db.ex2.find({"course": {"$in": ["CSC 365", "CSC 466" ]}}, {"course": 1, "_id":0})

{ "course" : "CSC 365" }

{ "course" : "CSC 466" }

Finishing Query Results

MongoDB allows the results of any find() request to be post-processed
using one of the following commands:

Command Effect

db.<collection>.find(...).limit(<Number>) set an upper limit on the number of returned documents

db.<collection>.find(...).skip(<Number>) skip the first <Number> of matching documents

db.<collection>.find(...).sort(<SortDocument>) sort the output according to the spec in <SortDocument>

db.<collection>.find(...).count() return the number of retrieved documents

Sort Document Syntax. A sort document provides a specification on
the sort order. It has the format:

{ "<key1>": SortOrder1, ..., "<keyM>": SortOrderM }

Here, SortOrder1,. . . SortOrderM are the specifications for the sort order on
the specific key. The sort order specifications can take the following values:
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Value Meaning

1 ascending sort order
−1 descending sort order

The three postprocessing commands/methods can be chained.

Examples. The following examples show how these commands work.

> db.ex2.find().limit(3)

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

> db.ex2.find().skip(3)

{ "_id" : 4, "course" : "CSC 357", "name" : "Systems Programming", "roster" : 122 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 7, "course" : "CSC 102", "roster" : 94, "sections" : 3 }

{ "_id" : 8, "course" : "CSC 480", "roster" : 32, "sections" : 1 }

{ "_id" : 9, "course" : "CSC 400", "roster" : null, "sections" : 8 }

{ "_id" : 10, "course" : "CSC 103", "sections" : 8 }

> db.ex2.find({"roster": 34}).sort({"_id": -1})

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

> db.ex2.find().limit(3).skip(3).sort({"roster": -1})

{ "_id" : 2, "course" : "CSC 369", "roster" : 61 }

{ "_id" : 6, "course" : "CSC 430", "roster" : 60 }

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

Aggregation. The count() method aggregates the results of the query.
Instead of reporting the documents, it reports the total number of the doc-
uments returns.

> db.ex2.find({"roster": {"$in": [34, 100]}})

{ "_id" : 1, "course" : "CSC 365", "roster" : 34 }

{ "_id" : 3, "course" : "CSC 466", "name" : "Data Mining", "roster" : 34 }

{ "_id" : 5, "course" : "CSC 101", "roster" : 100 }

> db.ex2.find({"roster": {"$in": [34, 100]}}).count()

3

Javascript Scripting

As mentioned above, MongoDB shell is a full-scale Javascript processor.
Javascript code can be run within the shell, Javascript programs can be
loaded and run from the shell. Additionally, Javascript programs can be
run by invoking mongo, the MongoDB shell in batch mode.

To build simple Javascript programs that batch-execute of MongoDB com-
mands, you need to know how to connect to the server instance and how to
select a database.
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Connection to server. Use Mongo() constructor. The following variants
are available:

Constructor Action

new Mongo() creates connection to the MongoDB instance on local host at the default port
new Mongo("<host>") creates connection to the MongoDB instance

at the specified host address at the default port
new Mongo("<host>:<port>") creates connection to the MongoDB instance

at the specified host and port

To connect to the local server place this code at the top of your script:

connection = new Mongo(); // use any variable name you like

Database Selection. To select a database to work with, use the getDB()
method on the connection object. The method is invoked after the connec-
tion object is instantiated. The syntax is as follows:

<dbVar> = <connVar>.getDB("<dbName>");

For example, to work with the database "examples" on the local server,
put this code at the beginning of your script:

connection = new Mongo();

db = connection.getDB("examples");

Running collection commands. You can put MongoDB collection ma-
nipulation commands directly into the body of your Javascript program.
The following script inserts one object into the ex1 collection.

connection = new Mongo();

db = connection.getDB("examples");

db.ex1.insert({"item": "one"});

Cursors. To retrieve data from MongoDB use Javascript cursors. The
following code runs through the contents on an entire collection and prints
each object:

connection = new Mongo();

db = connection.getDB("examples");

cursor = db.ex1.find();

while (cursor.hasNext()) {

x = cursor.next();

printjson(x);

}
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