
. .
Cal Poly CPE/CSC 369: Distributed Computations Alexander Dekhtyar
. .

Aggregation in MongoDB: Part II New and Additional
Operators

Overview of Aggregation Pipeline Operators

This handout describes the MongoDB Verision 4.2. aggregation pipeline.

In MongoDB Version 4.2. the following aggregation pipeline operators
(also known as stages are defined. Note the tables below shows only the list
of operators that actually facilitate work with data. There are several aggre-
gation pipeline steps we do not include on the list, that provide MongoDB
debugging information.

We break the list of the steps by the basic designation of the operator.
Note, some operators show up in multiple lists - whenever they do, it’s the
same operator, which combines features of multiple atomic operations.

Selection/Filtering Stages. Selection/Filtering operations check each doc-
ument in turn against a supplied condition. If the document does not match
the condition, the document is filtered out (not passed to the next processing
stage in the pipeline). If the document matches the condition, it is passed to
the next stage. The pure selection operation either filters the document out,
or passes the document in its original form. MongoDB now has a variant
that can also modify the contents of the output document (as the projec-
tion operation does). The following MongoDB aggregation pipeline stages
perform selection/filtering functions. We include here any and all types of
stages that perform a filtering function, including filters such as $limit and
$skip.

1

Operator Explanation

$match takes as input a match condition and outputs documents
that match the condition

$redact combines the functionality of $match and $project:
can filter out documents, and reshape them

$sample create a random sample of documents from the collection

$limit output only the first n documents passed to the stage

$skip skip the first n document passed to the stage,
output all the remaining ones

Projection/Transformation Stages. On a Projection/Transformation stage,
changes are made to the shape of the document: the keys and the values they
have. The changes are made to each document one at a time, and only the
information contained in the document itself is used in the operation. Mon-
goDB has a projection operation that captures a wide range of behaviors, as
well as some restricted versions that have simplified syntax, but provide bet-
ter readability for certain simple types of data projection/transformation,
such as additions of new keys, or removals of existing keys. Pure projec-
tion/transformation operations do not filter documents - each documeent in
the collection is transformed and passed to the next stage of the aggregation
pipeline.

Operator Explanation

$project transform input documents according to the
specification given as the argument

$redact combines the functionality of $match and $project:
can filter out documents, and reshape them

$addFields a restricted projection operation with simplified
syntax to add new fields to the document

$set alias for $addFields

$unset a restricted projection operation with simplified syntax
to remove fields from the documents

$replaceRoot a replaces the root document with the contents of
a document embedded into it

$replaceWith alias for $replaceRoot

Grouping and Aggregation Stages. A grouping operation splits the
document collection into a set of groups, based on a specified condition
(which may be a value or a set of values for the documents in the same
group to share). The output document collection will contain one document
per group. With semi-structured data, grouping operations can be done by
themselves in order to reshape the documents and collect information about
an entire group (stored in multiple original documents). They can also be
accompanied by aggregations - operations that compute an aggregate result
– one value, rather than a document – from a set of values. Aggregation op-
erations in MongoDB are not separate stages (except for $count) – rather,
they are part of expressions defining the contents of the output documents

2

in several types of stages – mainly grouping and projection stages. Aggrega-
tions can be performed over contents of arrays, or over contents of multiple
documents as they are being grouped.

MongoDB offers the following grouping stages:

Operator Type Explanation

$group grouping group (and if necessary aggregate) documents
in the collection by a specific key

$bucket grouping groups documents into ”buckets” based on
the value of specified expression falling into speficied ranges

$bucketAuto grouping like $bucket only bucket boundaries
are automatically identified

$sortByCount grouping a shorthand for a grouping operation
followed by a sorting operation

$count aggregation returns the number of documents

Joins. A Join is an operation on data that combines together documents
from different collections, typically based on a matching condition that com-
pares the contents of the two documents. Relational DBMS are good at per-
forming joins, but one of the major ”sacrifices” made in design of distributed
key-value stores (and later - distributed document databases) is lack of con-
venient built-in facilities for join operations. MongoDB has a very limited
slate of join operations.

Operator Explanation

$lookup performs a left outer join operation based on key match

$graphLookup performs a transitive closure join operation on graph-like data

Sort. Sorting operations change the order in which the documents in the
collection are reported. MongoDB has one key sorting stage and one stage
that incorporates sorting in it.

Operator Explanation

$sort sorts the input collection according to the provided sorting criteria

$sortByCount a shorthand for a grouping operation followed by sorting

Unwind. Unwinding is unique operation to the algebra of data manipula-
tion over semi-structured documents. This is a partial reverasl of a grouping
operation (or simply an unrolling of any array value in a document) that re-
places an object containing an array of values with a set of objects - one per
array element, where individual array elements replace the full array as the
value of the array key. Existence of this stage in the aggragation pipeline
allows for a lot of powerful manipulations of data based on grouping (to
combine certain aspects of data) followed by unwinding (to restore the data
back to the original format).

Operator Explanation

$unwind unwinds an array value in the documents

3

Faceted Filter. The faceted filter stage does not perform any operations
on the data by itself. Rather, it enables one aggregation pipeline to have
several diferent independent sequences of stages performed in parallel on the
data. Faceted filter ”splits” the aggregation pipeline into a given number of
sub-pipelines, and combines in a signle output document the results of all
the pipelines.

Operator Explanation

$facet splits (facets) the aggregation pipeline into multiple pipelines
combines results in a single document

Output. Technically not part of the data manipulation algebra, these op-
erations are nevertheless important, as they allow to persist of the results
of an aggragation pipeline in a MongoDB collection.

Operator Explanation

$out save the results of an operation to a new collection (old)

$merge save the results of an operation to an existing or new collection (new)

Details of Additional Stages

In what follows we discuss most of the stages not covered in the first handout,
but included in the tables above.

Adding Projection Expressions to $match

One of the biggest original limitations of db.collection.find() and the
$match aggregation stage is their inability to properly compare the values
of two fields/keys/attributes in a document. This is due to the fact that the
expressions in the db.collection.find() have traditionally had different
syntax than the expressions used in the $project and $group stages of the
aggregation pipeline. This required separate parsing mechanisms that were
incompatible.

In Version 3.6. MongoDB developers took steps to somewhat rectify
this issue by introducing a new expression construct

{$expr: <expression>}

Here, <expression> is any expression that can be found on the right-
hand-side of a key-value pair in a $project aggregation stage. This can be
leveraged to run comparisons between different parts of a document in the
$match stage.

Consider the following simple collection:

csc369Replicas:PRIMARY> db.ee.find()

4

{ "_id" : 1, "x" : 1, "y" : 2 }

{ "_id" : 2, "x" : 2, "y" : null }

{ "_id" : 3, "x" : 5 }

{ "_id" : 4, "x" : 6, "y" : [2, 3, 3] }

Let us find all documents where x is greater than the id. We can now
do it using $expr:

db.ee.aggregate({$match: {$expr: {$gt: ["$x", "$_id"]}}})

{ "_id" : 3, "x" : 5 }

{ "_id" : 4, "x" : 6, "y" : [2, 3, 3] }

More complex expressions involving arithmetics and aggregates over ar-
rays are allowed too.

Find all documents where id is less than x by 2.

db.ee.aggregate({$match: {$expr: {$eq: ["$x",

{$add: ["$_id",

2]

}

]

}

}

})

{ "_id" : 3, "x" : 5 }

{ "_id" : 4, "x" : 6, "y" : [2, 3, 3] }

Find all documents where the total value of y exceeds x

db.ee.aggregate({$match: {$expr: {$gt: [{$sum: "$y"},

"$x"

] }

}})

{ "_id" : 1, "x" : 1, "y" : 2 }

{ "_id" : 4, "x" : 6, "y" : [2, 3, 3] }

Note, how "$sum" handles non-array elements.

Left Join

The $lookup operation performs a left join of the current collection with the
collection listed in the parameters of the $lookup on the conditions specified.

The original syntax of the $lookup operation was:

5

{

$lookup:

{

from: <collection>,

localField: <field1>,

foreignField: <field2>,

as: <arrayField>

}

}

Here, <collection> specifies the collection with which to join. <field1>
and <field2> complete the condition that will be checked. The condition
is:

<coll>.<field1> = <collection>.<field2>

where <coll> is the collection on which the aggregation pipeline is run.
<arrayField> stores the results.

This operation works as follows. For each object in the collection on which
the aggregation pipeline is run, the collection <collection> is scanned,
object-by-object. Any object from this collection that contains <field2>

whose value is exactly equal to the value of the <field1> from the current
object from the host collection is added into the <arrayField> as another
array element.

The output object preserves all its original fields, and adds <arrayField>
constructed as described above.

Example. Consider the following two collections:

> db.grades.find()

{ "_id" : 1, "name" : "Bob", "class" : 365, "grade" : 88 }

{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92 }

{ "_id" : 3, "name" : "May", "class" : 365, "grade" : 76 }

{ "_id" : 4, "name" : "May", "class" : 453, "grade" : 90 }

{ "_id" : 5, "name" : "Chris", "class" : 365, "grade" : 93 }

{ "_id" : 6, "name" : "Chris", "class" : 453, "grade" : 74 }

> db.prof.find()

{ "_id" : 1, "course" : 365, "name" : "Alex" }

{ "_id" : 2, "course" : 369, "name" : "Alex" }

{ "_id" : 3, "course" : 453, "name" : "Phil" }

{ "_id" : 4, "course" : 307, "name" : "Davide" }

{ "_id" : 5, "course" : 466, "name" : "Foaad" }

{ "_id" : 6, "course" : 357, "name" : "Clint" }

The following $lookup operation adds the list of students taking each
course to each object from the profs collection for which there are students
in the grades collection.

6

> db.prof.aggregate({$lookup: {

... from: "grades",

... localField: "course",

... foreignField: "class",

... as: "roster"

... }

... })

{ "_id" : 1, "course" : 365, "name" : "Alex",

"roster" : [{ "_id" : 1, "name" : "Bob", "class" : 365, "grade" : 88 },

{ "_id" : 3, "name" : "May", "class" : 365, "grade" : 76 },

{ "_id" : 5, "name" : "Chris", "class" : 365, "grade" : 93 }] }

{ "_id" : 2, "course" : 369, "name" : "Alex", "roster" : [] }

{ "_id" : 3, "course" : 453, "name" : "Phil",

"roster" : [{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92 },

{ "_id" : 4, "name" : "May", "class" : 453, "grade" : 90 },

{ "_id" : 6, "name" : "Chris", "class" : 453, "grade" : 74 }] }

{ "_id" : 4, "course" : 307, "name" : "Davide", "roster" : [] }

{ "_id" : 5, "course" : 466, "name" : "Foaad", "roster" : [] }

{ "_id" : 6, "course" : 357, "name" : "Clint", "roster" : [] }

Note. $lookup performs, what is known as left outer join: the objects
from the host collection that are not joined with any objects from the foreign
collection are retained in the output with an empty array for the ”join” key-
value pair.

Additional $lookup functionality. The original $lookup operation is
of very limited use by itself, primarily because

• the join condition is ALWAYS the equality of a pair of fields: one local,
one foreign.

• it disallows any manipulations with the foreign collection. This means
that in a lot of situations the foreign collection needs to be prepared in
advance for the query (which is difficult with, for example, only read
access to the data), or that tricks have to be implemented (esssentially
using $lookup as a cartesian product operation). The latter deprives
$lookup of any semblence of efficiency.

In Version 3.6. MongoDB developers finally resolved this problem, by
offering an alternate syntax for the $lookup document. This syntax fixes
both issues in the following ways:

• the new pipeline field describes a series of aggregation steps to be
applied to the foreign collection.

• the new let step introduces ”local variables”. Their values are com-
puted in the scope of the local collection, but the variables can be

referenced in the pipeline expression, making it possible to use their

values in the scope of the foreign collection.

This can be used to create correlated join subqueries, and match on
more than just equality.

7

The alternate syntax of the $lookup command is thus:

{

$lookup:

{

from: <collection>,

let: { value1: <expression1>, ..., valueK: <expressionK>},

pipeline: [<stage1>, ..., <stageM>],

as: <arrayField>

}

}

Here, from and as have the same meaning as before: they respectively
name the foreign collection and the field in the output where to joined
documents from the foreign collection will be stored.

let is optional. When present, it defines a series of local variables with
names value1, . . . , valueK. The value of each of these local variables is
determined by the respective expression - which is any valid expression from
the $project stage.

pipeline takes as its value an array that contains a sequence of one or
more aggregation pipeline stages. These stages are applied to the foreign
collection. Any variables defined in the let portion of the syntax can be
referenced and used for coomputations and comparisons in the pipeline

stage using the $$ syntax. For example, if we have the following let defini-
tion:

let: {total: "$total"}

the reference to it in the pipeline stage will be "$$total".

Example. We demonstrate the new pipeline below. Consider the task of
finding all students whose CSC 453 grade was better than May’s. Here is a
stress-free way of doing it using the only the pipeline stage of new syntax.

db.grades.aggregate(

{$match: {class:453}},

{$lookup: {from: "grades",

pipeline: [{$match:{name: "May",

class: 453}},

{$project: {grade:1, _id:0}}

],

as: "may"

}

},

{$unwind: "$may"},

{$match: {$expr: {$gt: ["$grade", "$may.grade"]}}}

)

{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92, "may" : { "grade" : 90 } }

8

To give some inisight into the work of $lookup, here is specifically the
result of the $lookup stage of the pipeline:

{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92, "may" : [{ "grade" : 90 }] }

{ "_id" : 4, "name" : "May", "class" : 453, "grade" : 90, "may" : [{ "grade" : 90 }] }

{ "_id" : 6, "name" : "Chris", "class" : 453, "grade" : 74, "may" : [{ "grade" : 90 }] }

This example essentially, selects May’s grade from the foreign collection
and performs a cartesian product of the selected grade and all other docu-
ments that contain student grades in CSC 453.

Here is the same example, using the power of let and local variable dec-
larations to perform the join directly inside the pipeline description in the
$lookup.

db.grades.aggregate(

{$match: {class:453}},

{$lookup: {from: "grades",

let: {total: "$grade"},

pipeline: [{$match:{name: "May",

class: 453}},

{$project: {grade:1, _id:0}},

{$match: {$expr: {$gt: ["$$total", "$grade"]}}}

],

as: "may"

}

},

{$unwind: "$may"},

)

{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92, "may" : { "grade" : 90 } }

Bucketing

The bucketing operation is the version of grouping that uses a continuous
variable to break the data into separate groups/buckets. Essentially, rather
than combining the objects based on the same value of a specific key, buck-
eting combines them based on the value of a key falling in a specific range
(bucket).

In MongoDB aggregation pipelines bucketing is performed using the $bucket
operator. The syntax of a $bucket step is show below:

{

$bucket: {

groupBy: <expression>,

boundaries: [<lowerbound1>, <lowerbound2>, ...],

default: <literal>,

output: {

<output1>: { <$accumulator expression> },

...

9

<outputN>: { <$accumulator expression> }

}

}

}

Here:

• <expression> value of the groupBy key is the value that will be buck-
eted. This is usually a referenece to a key storing the value, but it
can also be any other numeric expression (see $project operation
documentation for numeric expressions).

• The array of numeric values supplied for the boundaries key stores
the breakdown of the space into buckets. Given the K values

[n1, n2, ..., nK]

there will beK−1 buckets of the form: [n1, n2), [n2, n3), . . . , [nK−1, nK].
Each bucket [ni, ni+1] will be represented in the output by a single ob-
ject with the key id: ni. Values that are smaller than n1 or greater
than nK fall outside of the bucket ranges. . .

• . . . and are handled by the default key. Its value is a literal that will
be used as the unique identifier of the default bucket, which is reserved
for accumulating information about objects that do not fall into any
of the other buckets.

• Finally, the output key describes how the output objects look like.
The key-value pairs inside this key are formed the same way as all
key-value pairs except for id are formed in $group operation.

Example. Let’s count how many grades in ranges 75-85, 85-95 and 95-100
are in the grades collection.

> db.grades.aggregate({$bucket: { groupBy:"$grade",

... boundaries: [75,85,95,100],

... default: "less than 75",

... output: {num: {$sum: 1}}

... }

... })

{ "_id" : 75, "num" : 1 }

{ "_id" : 85, "num" : 4 }

{ "_id" : "less than 75", "num" : 1 }

Special Versions of Projection

$addFields, $set. The $addFields ($set) operation works like a projec-
tion operation which includes all attributes from the input document and
adds additional attributes to the document. The syntax of the command is

10

{$addFields: { <newField>: <expression>, ...,

<newField>: <expression>} }

or

{$set: { <newField>: <expression>, ...,

<newField>: <expression>} }

Here <newField> represents the names of the new fields to be added to
the output documents, while <expression> has the same syntax as the
expressions used in the $project operation.

Example. Consider the following simple list of courses with the sizes of
each section specified.

> db.classes.find()

{ "_id" : 1, "class" : "CSC 369", "roster" : 28 }

{ "_id" : 2, "class" : "CSC 445", "roster" : 34 }

{ "_id" : 3, "class" : "CSC 466", "roster" : 17 }

{ "_id" : 4, "class" : "CSC 357", "name" : "Systems Programming", "sections" : ["01", "03", "05", "07"], "roster"

{ "_id" : 5, "class" : "CSC 101", "roster" : 100 }

{ "_id" : 6, "class" : "CSC 480", "name" : "AI", "roster" : 28 }

{ "_id" : 7, "roster" : 34, "class" : "CSC 202" }

{ "_id" : 8, "class" : "CSC 202", "sections" : ["01", "02", "03", "04"], "roster" : [20, 20, 30, 30] }

The following aggregation pipeline adds a new key to each document,
specifying whether the course in question has large sections.

> db.classes.aggregate({$addFields:

{sectionSize:

{$cond: [{$gte: ["$roster", 30]}, "large", "small"]}}})

{ "_id" : 1, "class" : "CSC 369", "roster" : 28, "sectionSize" : "small" }

{ "_id" : 2, "class" : "CSC 445", "roster" : 34, "sectionSize" : "large" }

{ "_id" : 3, "class" : "CSC 466", "roster" : 17, "sectionSize" : "small" }

{ "_id" : 4, "class" : "CSC 357", "name" : "Systems Programming", "sections" : ["01", "03", "05", "07"],

"roster" : [34, 20, 32, 25], "sectionSize" : "large" }

{ "_id" : 5, "class" : "CSC 101", "roster" : 100, "sectionSize" : "large" }

{ "_id" : 6, "class" : "CSC 480", "name" : "AI", "roster" : 28, "sectionSize" : "small" }

{ "_id" : 7, "roster" : 34, "class" : "CSC 202", "sectionSize" : "large" }

{ "_id" : 8, "class" : "CSC 202", "sections" : ["01", "02", "03", "04"], "roster" : [20, 20, 30, 30],

"sectionSize" : "large" }

$unset. The $unset stage is a version of a projection stage in which the
only change to the documents is deletion of some of the keys from them.
Its syntax is a little be shorter and less confusing than the syntax of the
$project stage that performs only key removals.

The syntax of the $unset stage is as follows:

{$unset: [<key1>,...,<keyK>]}

11

Here, <key1>,. . . ,keyK are strings representing the names of the keys in
the documents that will be removed by the operation.

If $unset needs to remove only one key, a simplified syntax

{$unset: <key>}

can be used instead of making the value an array.

$replaceRoot, $replaceWith. This stage provides a convenient short-
hand for situations when the documents in the collection contain embedded
documents that need to be ”surfaced”, i.e., become ”roots” of the return
documents. This operation can be performed by the $project stage, but
the use of $replaceRoot or $replaceWith in its stead improves readability
of your code. The syntax of the stages (we use $replaceRoot, the other
stage name, $replaceWith is an alias, and has exactly the same syntax) is
as follows:

{ $replaceRoot: { newRoot: <replacementDocument> } }

Here, <replacementDocument> is a description of what the new output
document should look like. It follows the same syntax and the rules as the
documents used as the arguments of the $project stage.

Faceted Filter

The $facet aggregation operation allows for a split of aggregation pipelines.

That is, $facet allows the user to provide a list of independent pipelines
that can be run on a given document collection.

The $facet syntax is as follows:

{ $facet:

{

<outputField1>: [<stage1>, <stage2>, ...],

<outputField2>: [<stage1>, <stage2>, ...],

...

<outputFieldK>: [<stage1>, <stage2>, ...],

}

}

The result of this operation is a single object that consists of fileds:
<outputField1>,. . . <outputFieldK> each with the result of the aggrega-
tion pipeline specified as its input.

Note. This is useful when you want to compute a variety of aggregation op-
erations based on different groupings, or to see different slices of the dataset
at the same time.

12

Example. This is a very simplified example based on a small collection of
student grades in two courses:

> db.grades.find()

{ "_id" : 1, "name" : "Bob", "class" : 365, "grade" : 88 }

{ "_id" : 2, "name" : "Bob", "class" : 453, "grade" : 92 }

{ "_id" : 3, "name" : "May", "class" : 365, "grade" : 76 }

{ "_id" : 4, "name" : "May", "class" : 453, "grade" : 90 }

{ "_id" : 5, "name" : "Chris", "class" : 365, "grade" : 93 }

{ "_id" : 6, "name" : "Chris", "class" : 453, "grade" : 74 }

Consider a scenario where you want to return back an object that contains
the following three things:

1. List of all students with a grade of 85 or above in CSC 365.

2. Average scores for students in each of the classes (as an array).

3. Highest score in CSC 453.

Each of the three requests can be executed in isolation as an aggregation
pipeline:

1. To find CSC 365 students with a score of 85 or higher:

db.grades.aggregate({$match: {class:365, grade: {$gte: 85}}})

2. To find average scores in each class and format the output appropri-
ately:

db.grades.aggregate({$group: {_id: "$class", avgScore:{$avg: "$grade"}}},

{$group: {_id:1, scores:{$push: {class:"$_id", avgScore:"$avgScore"}}}},

{$project: {_id:0}})

3. To find the highest score in CSC 453:

db.grades.aggregate({$group: {_id:"$class", maxGrade:{$max: "$grade"}}},

{$match: {_id: 453}},

{$project: {_id:0}})

Using the $facet aggregation operation, we can now combine these three
pipelines into as single step:

> db.grades.aggregate({$facet: {

csc365_hi: [{$match: {class:365, grade: {$gte: 85}}}],

averages: [{$group: {_id: "$class", avgScore:{$avg: "$grade"}}},

{$group: {_id:1, scores:{$push: {class:"$_id", avgScore:"$avgScore"}}}},

{$project: {_id:0}}

],

max453: [{$group: {_id:"$class", maxGrade:{$max: "$grade"}}},

{$match: {_id: 453}},

{$project: {_id:0}}

]

}}

13

).pretty()

{

"csc365_hi" : [

{

"_id" : 1,

"name" : "Bob",

"class" : 365,

"grade" : 88

},

{

"_id" : 5,

"name" : "Chris",

"class" : 365,

"grade" : 93

}

],

"averages" : [

{

"scores" : [

{

"class" : 453,

"avgScore" : 85.33333333333333

},

{

"class" : 365,

"avgScore" : 85.66666666666667

}

]

}

],

"max453" : [

{

"maxGrade" : 92

}

]

}

Additional Operations

$sample. The $sample operation returns a random sample of documents
from the collection. The syntax of the aggregation pipeline command is:

{$sample: {size: <positive integer>}}

Here, <positive integer> represents the number of documents to put in
the sample. Note, this operation samples with replacement, so a document
from the original collection can be placed in the sample multiple times.

Example. In the example below, we ask for a sample of size three twice
in a row and observe different documents returned.

> db.classes.aggregate({$sample: {size: 3}})

{ "_id" : 4, "class" : "CSC 357", "name" : "Systems Programming",

14

"sections" : ["01", "03", "05", "07"], "roster" : [34, 20, 32, 25] }

{ "_id" : 5, "class" : "CSC 101", "roster" : 100 }

{ "_id" : 2, "class" : "CSC 445", "roster" : 34 }

> db.classes.aggregate({$sample: {size: 3}})

{ "_id" : 7, "roster" : 34, "class" : "CSC 202" }

{ "_id" : 1, "class" : "CSC 369", "roster" : 28 }

{ "_id" : 8, "class" : "CSC 202", "sections" : ["01", "02", "03", "04"],

"roster" : [20, 20, 30, 30] }

$count. This operation returns an object with a single key-value pair. The
key name is provided as the input to the operation. The value is the number
of documents produced on the previous stage of the aggregation pipeline.
The format of the aggregation pipeline document for $count is as follows:

{$count: <string>}

Here, <string> is the name of the key in the output document.

example. The example below runs an aggregation pipeline that counts
how many courses have sections that have less than 25 students in them.

> db.classes.aggregate({$match: {"roster": {$lt: 25}}})

{ "_id" : 3, "class" : "CSC 466", "roster" : 17 }

{ "_id" : 4, "class" : "CSC 357", "name" : "Systems Programming",

"sections" : ["01", "03", "05", "07"], "roster" : [34, 20, 32, 25] }

{ "_id" : 8, "class" : "CSC 202", "sections" : ["01", "02", "03", "04"],

"roster" : [20, 20, 30, 30] }

> db.classes.aggregate({$match: {"roster": {$lt: 25}}},

{$count: "numberSmallClasses"})

{ "numberSmallClasses" : 3 }

$out. The $out pipeline aggregation command can only show up as the
last command of the pipeline. It directs the result of the previous stage of
the pipeline to be inserted into a given new collection. The format of the
command is simple:

{$out: "<output-collection>"}

Here, "<output-collection>" is a string representing the name of the
new collection into which the result of the aggregation pipeline will be in-
serted.

Example. Here is an example of creating a new collection classNames

consisting of only course names.

15

> db.classes.aggregate({$project: {"_id":0, "class":1}},

{$out: "classNames"})

> db.classNames.find()

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd04"), "class" : "CSC 369" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd05"), "class" : "CSC 445" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd06"), "class" : "CSC 466" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd07"), "class" : "CSC 357" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd08"), "class" : "CSC 101" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd09"), "class" : "CSC 480" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd0a"), "class" : "CSC 202" }

{ "_id" : ObjectId("5c4eb2502209cf8793d2fd0b"), "class" : "CSC 202" }

The $out operation has several limitations. The new collection must
reside in the same database as the collection that is being worked on by
the aggregation pipeline. This makes it impossible to use $out to extract
information in databases where the user only has read access. Additionally,
$out overwrites the output collection with the result – which, in some cases,
is the desired behavior, but in some other cases - is not. The $merge stage
was introduced in Version 4.2. to provide more control over saving of the
results of aggregation pipelines.

$merge. The $merge operation provides fine-tuned control over saving
output of an aggregation pipeline. Like $out, the $merge can only show up
exactly once in the aggregation pipeline, and can only be the last stage of
such a pipeline (meaning, among other things, that no pipeline can contain
both $merge and $out stages). But $merge can handle several different
ways of saving the results:

• Target collection: the target collection can be created in a different
database than the source collection. This makes $merge a versatile
operation for users who have read permissions for data access in a spe-
cific (usually shared) read-only resource, but who have write access to
other databases, into which they can put the output of an aggregation
pipeline.

• New vs. existing collection: the operation supports both placing
data into a brand new collection, as well as into a collection that
already exists.

• Merging the results: when results are placed into an existing collec-
tion, the user can choose one of four available conflict resolution/data
integration policies for the situation when a document with the same
identity exists both in the collection and in the aggregation pipeline
document:

1. "replace": the results of the aggregation pipeline replace any
documents in the same existing collection that have the same
itendity.

16

2. "keepExisting": existing objects from the collection take prece-
dence over objects with the same identity supplied by the aggre-
gation pipeline output.

3. "merge"(default): the results of the aggregation pipeline are com-
bined in a single document with the existing objects in the col-
lection that share the same identity.

4. "fail": if the results of the aggregation pipeline contains objects
with the same identity but with different content than the objects
already in the collection, stop the operation, and fail.

5. custom handling: the user can also specify an aggregation
pipeline as the data integration policy – the result of the pipeline
applied to the document from the aggregation pipeline will be
placed into the collection.

Additionally, when a document contained in the output of the aggrega-
tion pipeline is not found in the collection, $merge operation supports
a choice of three different ways of proceeding:

1. "insert" (default): the document is inserted into the target col-
lection.

2. "discard": the document is not inserted into the target collec-
tion.

3. "fail": fails the operation

The full syntax of the operation is:

{$merge: {

into: <collectionSpecification>,

on: <idSpecification>,

whenMatched: <replace|keepExisting|merge|fail|<pipeline> >,

whenNotMatched: <insert|discard|fail>

}

}

In this stage description, the on, let, whenMatched, and whenNotMatched
keys are optional. whenMatched and whenNotMatched have default
values speficied above: "merge" for the former, and "insert" for the
latter.

The values of the keys in the $merge document have the following
syntax and meaning:

collectionSpecification is either a string literal identifying the
name of a collection in the current database where the output will
be placed, or, a document of the form:

{

db: <databaseName>,

coll: <collectionName>

}

17

In the long form, the document provides the name of the database
(presumably a different one from the database in which the input
collection resides), and the name of the collection into which to place
the output.

on: specifies how the identity (and matches) between the documents
from the aggregation pipeline and those in the output collection is
established. The default value of this key is " id" (match on the
internal id – remember, you can set it up/manipulate it in your our
work).

The syntax of this key is:

on: <keyName>

or:

on: [<keyName1>,...,<keyNameL>]

The second format establishes a multi-attribute key to be used for
object identification and match.

18

