CSC 369 Distributed Computing Alexander Dekhtyar

Running Hadoop Programs on ambari-head.csc.calpoly.edu
Cluster

Overview

This document contains information that is specific to running Hadoop pro-
grams on our local cluster.

CSLVM Hadoop Cluster

At the moment hadoop is installed on the ambari-head.csc.calpoly.edu
cluster, which besides ambari-head contains four more nodes: ambari-node01,
ambari-node02, ambari-node03, ambari-nodeO4.

All your work with the cluster will take place on ambari-head.csc.calpoly.edu.

To successfully run Hadoop jobs on the cluster, you need to know the
following,.

Location of Hadoop Binaries. The hadoop, hdfs, and yarn binaries
are located in /usr/bin.

Our Hadoop installation is version 2.7.3

Java Hadoop Package. Core Hadoop library is available in the hadoop-core-1.2.1. jar
jar file. The file can be downloaded from the course web page:

http://users.csc.calpoly.edu/~dekhtyar/369-Winter2019/code/hadoop-core-1.2.1 jar

Note: This file may be out of date. We will provide a new org.apache.hadoop
implementation once we discover it.

Compiling Hadoop code. To compile a Hadoop job located in file myJob. java,
place the hadoop-core-1.2.1. jar file in the directory where myJob. java
is located and run the following command from that directory:

$ javac --release 8 -cp hadoop-core-1.2.1.jar myJob.java

Note: The Java JDK currently installed on ambari-head.csc.calpoly.edu
is Version 11, and the corresponding version of Java class files for it is 55.
Hadoop understands Java class files of version 52 corresponding to Java Ver-
sion 8. In order to use the V11 javac compiler, we need to explicitly down-
grade the output class files to Version 8. We do this using the --release 8
command parameter.

Additional Note: To stop prolifiration of the hadoop-core-1.2.1. jar
I recommend creating a ~userid/jars directory, placing the jar file there,
and adding the jars directory to the classpath.

Making a Jar of your Hadoop Job. Hadoop allows running .class
files only on local intallations. Our Hadoop is installed as a three-node
cluster. On such installations, all Hadoop jobs must be packaged as jars.

To create a jar for your Hadoop job, run the following command (after
compiling the code):

$ jar cvf myJob.jar *.class
Alternatively, you can create a simple manifest.txt file with the content:
Main-Class: myJob

and create a jar file using the command:

$ jar cvf myJob.jar manifest.txt *.class

Removing .class files. In some situations your jar files won’t execute
correctly unless you remove the .class files after creating the jar file.

Running your Hadoop Jobs. Once you created the jar file, you can run
it as follows.

$ hadoop jar myJob.jar myJob <hadoop job arguments>

The last argument of the command before <hadoop job arguments> is
the Java class that contains the public static int main() method. If
you created your jar file with a manifest.txt file as as discussed above,
you can omit the Java class name:

$ hadoop jar myJob.jar <hadoop job arguments>

<hadoop job arguments> are any of the command-line arguments you
need to pass to the public static int main() of your program. Often
these are the locations of the input files and output directory.

Alternative way to compile and run Hadoop jobs

This is a better way. It avoids having to use org.apache.hadoop jars, but
it does require some extra settings in your .bashrc file.

Basic idea. hadoop is a launcher of JVMs. It can be used to launch any
java process, including javac. When java compiler is launched this way, the
org.apache.hadoop package is available at compile time without the need
to explicitly include it into the classpath. This requries some setup though.

Please note: the instructions below work on the cs1lvm57 (and will work
on cslvmb6, cslvmb5 if you are given access to those) specifically.

Step 1. Setting up environment. Add the following commands to your
.bashrc file:

export JAVA_HOME=/usr/1lib/jvm/java-8-openjdk-amd64
export PATH=${JAVA_HOME}/bin:${PATH}
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar

After that, execute (from your home directory)
$ source .bashrc

This will immediately create these variables and will allow you to continue
work. .bashrc runs automatically upon every login, so from then on, you
won’t need to worry about these settings.

Step 2. Compilation and creation of jar. The reason why we cre-
ated $HADOOP_CLASSPATH variable and pointed it to Java’s tools. jar file is
because it contains javac in it! The Java compiler resides in the following
class:

com.sun.tools. javac.Main
We can run it through hadoop as follows:
$ hadoop com.sun.tools.javac.Main myJob.java

This results in compilation of myJob. java with org.apache.hadoop classes
present. We can now create the jar as before:

$ jar cvf myJob.jar *.class

Step 3. Execution. The final step is the same as above:

$ hadoop jar myJob.jar myJob <inputParameters>

Additional Information

Monitoring your job. Hadoop provides a web service allowing one to
monitor the status of Hadoop jobs via a browser. Because cslvmb5 does not
have pinholes set, this is only possible if you are currently on campus, or
running a campus VPN client on your machine.

The URL for the Hadoop monitor is

http://ambari-head.csc.calpoly.edu:8088/cluster

Third party Jars. For more complex Hadoop jobs you often may need
third-party Jar files to be used with the Mapper and/or Reducer code. Be-
cause the Mapper and Reducer jobs run in separate JVMs on the cluster,
their classpath environments are different than the classpath envoronment
of the public static int main(). Fortunately, Hadoop allows us to pass
third-party jars to the cluster JVMs using the -1libjars option.

The full command to run a Hadoop job from mylJob.jar file that relies on
a third-party jar file foo.jar and another third party jar file bar. jar:

$ hadoop jar myJob.jar myJob -libjars foo.jar,bar.jar <hadoop job arguments>

