
. .
CSC 369 Distributed Computing Alexander Dekhtyar
. .

Matrix Multiplication in MapReduce

Overview

Matrix Multiplication:

• is extremely important in computing. It is critical to a large number
of tasks from graphics and cryptography to graph algorithms and machine
learning.

• it computationally intensive. A näıve sequential matrix multiplication
algorithm has complexity of O(n3). Algorithms with lower computational
complexity exist, but they are not always faster in practice.

• is a good candidate for distributed processing. Every matrix cell
is computed using a separate, independent from other cells computation.
The computation consumes O(n) input (one matrix row and one matrix
column).

As such, matrix multiplication is a good candidate for being expressed as a
MapReduce computation.

Matrix Multiplication

For the sake of completeness we briefly define matrix multiplication operation
here.

Let A = (aij be an n × m matrix, and B = (bjk) be an m × s matrix:

A =





a11 . . . a1m

. . .

an1 . . . anm





B =





b11 . . . a1s

. . .

bm1 . . . ams





An n × s matrix C = (cik):

1



C =





c11 . . . a1s

. . .

cn1 . . . ans





is the product of A and B:

AB = C

if

cik =

m
∑

j=1

aij · bjk

Basic Solution

The last formula defines n · s computations, each independent of others.

Our goal is to create n · s reducers: one for each pair (i, k) of rows from
matrix A and columns from matrix B.

A pair of indexes (i, k), i ∈ [1, . . . , n], k ∈ [1, . . . , s] can serve as the key for
the reducer function.

Straightforward: the input value for the reducer function can be a list consist-
ing of two vectors: ai = (ai1, . . . , aim) and bk = (b1k, . . . , bmk).

reduce(). Based on this, a simple reduce() function for computing a single
cell of the matrix can look as follows (in pseudocode):

function reduce(key, <list> value) {

vector1 := value[0]; // extract one vector

vector2 := value[1]; // extract the second vector

m := size(vector1);

cell := 0;

for i=0 to m-1 do // compute dot product of the vectors

cell := cell+ vector1[i]*vector2[i];

end for

emit(key, cell); // output the result indexed by the key

}

To create a matching map() function, we need to agree on the format of the
input. Here, we select the simplest possible input for the mapper. In section
below, we discuss variants of the input.

Let us assume that the input matrices come in two separate files, which have
the following formats:

1. The file containing matrix A stores this matrix in the row-wide form, i.e.,
each line of the input file corresponds to one row of matrix A.

2. The file containing matrix B stores this matrix in the column-wide format,
i.e., each line of the input file corresponds to one column of matrix B. In
other words, this file actually stores in row-wide format matrix BT .

3. Each row starts with a pair of numbers representing the row of the matrix
that is being considered. (For input file for matrix A this is a row of A,
for input file for matrix B this is a row of BT , i.e., a column of B). We
assume that map() functions treats that first value as the key.

2



Under these assumptions, we can use a simple reduce-side join pattern and
create two independent map() functions to feed input into the reduce() function
above.

function mapA(key, value) { // mapper for managing matrix A input file

Vector v = string2vector(value); // convert input value from string to vector

for j = 1 to m do // distribute the vector everywhere it is needed

newKey = (key, j);

emit(newKey, v);

end for

}

function mapB(key, value) { // mapper for managing matrix B input file

Vector v = string2vector(value); // convert input value from string to vector

for i = 1 to s do // distribute the vector everywhere it is needed

newKey = (i,key);

emit(key, v);

end for

}

Variants

The basic MapReduce solution assumes very specific input format: two matrices
in separate files, second matrix transposed.

Below, we show how to change our matrix multiplication procedure for two
(actually three) other common input formats.

Alternative Input Format 1: Two matrices in same file. Often, both
matrices come in the same input file. In the most simple case, the input file
first contains the rows of matrix A, followed by the rows of matrix BT .

If both matrices are stored in the same file, the rows of A and the rows of BT

must be diffirentiated in the input file.

This means that the key to each row is a pair (Origin, Index) where Origin
is a matrix label (A or B), and Index is an integer row number.

Example. Consider for example the following two matrices:

A =





2 5 8
3 9 1
6 4 10





B =





5 8
2 1
7 9





The input file representing these two matrices can look as follows1:

A 1,2 5 8

A 2,3 9 1

A 3,6 4 10

B 1,5 2 7

B 2,8 1 9

1Without loss of generality we use commas to separate keys from values in each row, and

we use spaces to separate individual matrix cell values from each other.

3



For input like this, we can keep the same reduce() function, but we do need
to merge the two map() functions into one:

function map(key, value){

v := String2Vector(value);

matrixId := key.matrixId;

if matrixId == "A" then

row := key.rowId;

for i = 1 to m do

newKey = (row, i);

emit(newKey, v);

end for

else

if matrixId == "B" then

col := key.rowId;

for j = 1 to m do

newkey=(j, col);

emit(newKey, v);

end for

end if

}

Alternative Input Format 2: Matrix B is NOT transposed. The first
truly challenging input format arises in situations when the second input matrix,
B, is supplied directly, NOT in transposed format. For example, the input file
supplying both matrices A and B as-is can look as follows:

A 1,2 5 8

A 2,3 9 1

A 3,6 4 10

B 1,5 8

B 2,2 1

B 3,7 9

Note: In this case, the mapper must do different things for A and B matrix
input lines. Specifically, we no longer can emit the full row of matrix BT (i.e.,
full column of B) to the reducer.

This means that we must change both the map() and the reduce() functions.

function map(key, value) {

v := String2Vector(value);

matrixId := key.matrixId;

if matrixId == "A" then // for matrix A we do the same thing

row := key.rowId;

for i = 1 to m do

newKey = (row, i);

newVal = ("A", v); // except we add "A" to emitted value

emit(newKey, newVal);

end for

else

if matrixId == "B" then // for matrix B we emit one value at a time

row := key.rowId;

for k = 1 to s do

4



newVal := v[k-1]; // extract the next element row v

for j = 1 to m do // emit this element where it is needed

newkey :=(row, k);

newValue := ("B", j, newVal); // we emit the value, its position in vector

emit(newKey, newValue); // and matrix flag

end for

end if

}

reduce() function must now untangle its input properly.

function reduce(key, <list> values) {

vectorB := new vector(m, 0); // initialize vectorB to be an m-tuple of zeros

for v in values do

if v.matrixId == "A" then // for matrix A simply extract the vector

vectorA := v.vector;

else

if v.matrixId == "A" then // for matrix B extract one element at a time

index := v.index;

val := v.val;

vectorB[index-1] := val;

end if

end for

// now, compute the dot product of two vectors

sum := 0;

for i=1 to m do

sum := sum + vectorA[i-1]*vectorB[i-1];

end for

emit(key, sum);

}

Alternative input format 3: Sparse Matrices. Large matrices are often
sparse and the dense row-wide formats for representing them in input are bulky.
For these cases, a format that presents one value per line is used. The input file
has the format:

MatrixId Row Column, Value

For example, the matrices from the example above would be represented as

A 1 1, 2

A 1 2, 5

A 1 3, 8

A 2 1, 3

A 2 2, 9

A 2 3, 1

A 3 1, 6

A 3 2, 4

A 3 3, 10

B 1 1, 5

B 1 2, 8

B 2 1, 2

B 2 2, 1

B 3 1, 7

B 3 2, 9

5



(note: B is this case is not transposed)

In this case, map() must emit one value at a time for both A and B values.
This value must be keyed by the row and column of the result matrix, but must
also contain the matrix of origin information and location in the vector.

function map(key, value) {

matrixId := key.matrixId; // deconstruct key

row := key.row;

col := key.col;

if matrixId == "A" then

for i = 1 to s do

newKey := (row,i);

newValue := ("A", col, value);

emit(newKey, newValue);

end for

else

if matrixId == "B" then

for i = 1 to n do

newKey := (i,col);

newValue := ("B", row, value);

emit(newKey, newValue);

end for

}

The matching reduce() function reconstructs both vectors from A and B

and computes the dot product.

function reduce(key, <list> values) {

vectorA := new vector(m, 0); // initialize vectorA to be an m-tuple of zeros

vectorB := new vector(m, 0); // initialize vectorB to be an m-tuple of zeros

for v in values do

if v.matrixId == "A" then

index := v.index;

val := v.val;

vectorA[index-1] := val;

else

if v.matrixId == "A" then

index := v.index;

val := v.val;

vectorB[index-1] := val;

end if

end for

// now, compute the dot product of two vectors

sum := 0;

for i=1 to m do

sum := sum + vectorA[i-1]*vectorB[i-1];

end for

emit(key, sum);

}

6


