
. .
CSC 369 Distributed Computing Alexander Dekhtyar
. .

Resilient Distributed Datasets and Spark

Issues with MapReduce

The MapReduce framework and its implementations, such as Hadoop is a pow-
erful distributed computing infrastructure that incorporates:

• Distributed File System (DFS). All files on which MapReduce jobs
are run reside on a distributed file system, making them available to all
nodes in the cluster. While management of the DFS is not part of the
core MapReduce framework, the two go hand in hand.

• Distributed execution of two operations: Map - for transforming data, and
Reduce - for aggregating data.

• Automated Shuffle operation that directs output of the Map to the correct
reducers, and that prepares the input for the Reduce operations.

• A variety of solutions for empowering Map and Reduce operations: dis-
tributed cache, combiners, and so on.

At the same time, MapReduce has a number of important deficiencies:

• Limitation on operations. There are only two types of operations:
Map and Reduce. While this is enough to implement distributed versions
of any and all operations, some operations, such as joins can only be
implemented in relatively awkward ways.

• Iterative jobs. MapReduce frameworks treat each individual MapReduce
program/operation in isolation, by creating a separate data pipeline for
each operation. Any data sharing between multiple operations (storage of
data in RAM) is impossible. This creates overhead for each MapReduce
job.

• Interactive Analysis. MapReduce jobs run in batch mode. While there
are extensions of MapReduce that provide declarative querying facilities
(Hive, Pig, etc.) that work by translating declarative SQL-like syntax
into MapReduce jobs, the use of such facilities is still restricted by the
Iterative jobs issue.

1



Resilient Distributed Datasets (RDDs)

Resilient Distributed Datastets (RDD) are read-only collections of objects
partitioned across a set of machines. The core properties of RDDs are:

• Volatile storage. RDDs are constructed to reside both in persistent
storage and in RAM.

• Resilience. This property is defined as the ability to restore/rebuild the
entire RDD, or any of its parts if a connection to a node in a distributed
cluster is lost, taking away a portion of, or the full contents of an RDD.

• Data Transformations. RDDs are supplied with a collection of data
transformation operations that create new RDDs.

• Actions. RDDs also can have actions performed on them. An action is
an operation on an RDD that results in output generated and passed back
to the user.

• Lazy Evaluation. RDDs achieve high performance due to lazy evaluation

of transformations. That is, transformations on RDDs are not evaluated

(but rather - are buffered) for as long as no action on an RDD needs to
be taken. When an action operation is performed, all transformations
applied to the original RDD(s) are performed at the same time, and are
optimized.

Contrast it with MapReduce’s eager evaluation of Map and Reduce oper-
ations.

• Rich set of operations. The sets of both transformations and actions

on RDDs are rich, implementing traditional relational algebra operations
of selection (fitering), projection, duplicate elimination, join, as well as
traditional set operations as language primitives.

Contrast it with the efforts required to express a join or a duplicate elim-
ination operation in MapReduce framework.

Transformations

The following transformation operations were originally defined on RDDs. Note,
current implementation of Spark allows for additional transformations.

Below, let T and U represent types of objects in RDDs, K represent keys in
key-value pairs, V and W represent values in key-value pairs.

map(). The RDD map() operation is a ”classic” map() that takes as input a
function f(.), and applies this function to each element of the RDD, producing
one object in the output per each input object. The description is as follows:

map(f : T =⇒ U)

RDD[T] =⇒ RDD[U]

flatMap(). This is the analog of the map() method in the MapReduce frame-
work. MapReduce’s map() can emit multiple key-value pairs per given input.
This is represented by making the input function f() for flatMap() map input
objects into sequences of output objects:

flatMap(f : T =⇒ Sequence[U ])

RDD[T] =⇒ RDD[U]

2



mapValues(). Another version of map(), used when the input RDD consists
of Key-Value pairs, and when only the value needs to be transformed. The key
reason why this transformation exists as a separate operation, is because it can
be performed while preserving the partition of the RDD.

mapV alues(f : V =⇒ W )

RDD[(K, V)] =⇒ RDD[(K, W)]

filter(). This is the direct implementation of the relational algebra selection

operation. filter() operation takes as input a function f that for each object
returns either True (object is preserved in the new RDD) or False (object is
removed from the new RDD).

filter(f : T =⇒ Boolean)

RDD[T] =⇒ RDD[T]

sample(). This transformation (deterministically) selects a sample of the in-
put RDD. The input is the fraction of the RDD to put into the output.

sample(fraction : Float)

RDD[T] =⇒ RDD[T]

groupByKey(). This transformation is applied to RDDs that consist of Key-
Value pairs. For each unique Key, all values associated with it are placed into
a sequence.

groupByKey()

RDD[(K, V)] =⇒ RDD[(K, Sequence[V])]

reduceByKey(). This is the transformation version of the reduce operation.
The result of this transformation is a new RDD (lazily evaluated), in which
values belonging to the same key have been aggregated. The input is a function
that takes two values and output one value (basically the ”rolling” aggrega-
tion/reduction function).

reduceByKey(f : (V, V ) =⇒ V )

RDD[(K, V)] =⇒ RDD[(K, V)]

union(). The set union operation. The output RDD is the union of the two
input RDDs.

union()

RDD[T], RDD[T] =⇒ RDD[T]

join(). A join-by-key (i.e., equijoin) version of the relational algebra join op-
eration. Applied to RDDs that consist of Key-Value pairs. For each pair of
objects from two different RDDs that share a key, an output object combining
their values under the same key is created.

join()

RDD[(K, V)], RDD[(K, W)] =⇒ RDD[(K, (V, W))]

3



cogroup(). Another operation to combine information from two RDDs into
a single one. Unlike join, where the combination is done on an object by object
basis, cogroup(), applied to a pair of RDDs containing Key-Value pairs pro-
duces, for each Key, a single object containing two lists (sequences) of values:
one from each of the input RDDs.

cogroup()

RDD[(K, V)], RDD[(K, W)] =⇒ RDD[(K, (Sequence[V], Sequence[W]))]

crossporduct(). A cartesian product of two RDDs producing an object in
the output for each pair of input objects from two input RDDs.

crossproduct()

RDD[T], RDD[U] =⇒ RDD[T, U]

sort(). Sort the objects in the RDD based on a specific comparator.

sort(c : Comparator[K])

RDD[(K, V)] =⇒ RDD[(K, V)]

partitionBy(). Create a partition of the RDD (distribute portions of the
RDD to different nodes) based on the input partition criterion.

partitionBy(p : Partitioner[K])

RDD[(K, V)] =⇒ RDD[(K, V)]

Actions

The following actions were initially defined on RDDs. At present, Spark sup-
ports some additional actions as well.

collect(). Output the contents of the input RDD in a serialized form.

collect()

RDD[T] =⇒ Sequence[T]

save(). The save() action serializes the RDD and writes its contents back to
disk (e.g., as an HDFS file).

save(path : String)

count(). Outputs the number of objects in the RDD.

count()

RDD[T] =⇒ Long

4



reduce(). This is the action version of the reduce operation, similar to the
MapReduce reduce. The input is a function that aggregates objects in the
RDD.

reduce(f : (T, T ) =⇒ T )

RDD[T] =⇒ T

lookup(). Given a key, lookup outputs the list of values stored under that
key. This assumes that the RDD is a collection of Key-Value pairs.

lookup(k : K)

RDD[(K, V)] =⇒ Sequence[T]

RDD Representation

Resilient Distributed Datasets are

• Immutable.

• Read-only.

• Lazily Evaluated.

In general, an initial RDD is built by loading a data file from persistent storage
into main memory.

All subsequent transformations over this RDD are recorded in a form of a
transformation graph.

An action applied to an RDD causes the materialization of the RDD: i.e.,
it triggers the computation encoded by the transformation graph.

Because multiple operations in the transformation graph can be pipelined, this
creates a possibility for significant improvement in performance over MapRe-
duce.

5


