
. .
CSC 369 Distributed Computing Alexander Dekhtyar
. .

Joins using MapReduce

Overview

As discussed before, a Join operation is a data processing operation that com-
bines records from two sources (e.g., two different input files), putting together
two records if their content satisfies a specified condition (called a join condi-
tion).

Join is a combination of a cartesian product operation, an operation that
given two collections of records creates a collections of all possible pairs of
records (one record from each input collection), and a filtering/selection op-
eration that applies the join condition to each paired record in the result of the
cartesian product.

As a result, one way to define/describe a join between two collections R and
S on some join condition C based on the contents of records in R and S is
through the following näıve algorithm:

Algorithm Join(R,S,C)

for each t in R do

for each s in S do

if C is true for <t,s> then

emit(<t,s>)

end if

end for

end for

Issues With Implementing Joins in Distributed Computing Frame-

works

The double-nested loop in the algorithm above is a global loop - each record
from one source is compared to each record from another source.

For some join conditions, worst-case output is the entire cartesian product
(e.g, for a join condition R.x != S.y in a situation when there is no pair or
records with a match between the values of R.x and S.y).

Traditional DBMS techniques for processing joins concentrate on optimizing
data complexity of the join algorithms, i.e., optimizing the total number of disk

1



reads made in order to compute the result. This is not necessarily the right way
to view join operations in distributed computing frameworks.

Joins and MapReduce

In order to implement joins in MapReduce framework we need the following:

• An ability to work with two source files within the same MapReduce pro-
cess.

It turs out that MapReduce (and Hadoop) provides two different ways to do
this, and each gives rise to a different way of implenting the join operation.

• Multiple Input Files handled by (possibly) multiple mappers: this ap-
proach can be used to set up a Reduce-side join.

• Distributed Cache: this approach can be used to set up a Map-side join.

Each type of implementation has its own limitations. The basic idea behind
each approach is:

• Reduce-side join: Mappers are used to process two files ”in parallel”.
The outputs of each mapper are synchronized on the output key, so that
pairs of records that need to be compared wind up as input the the same
reduce() instance. The actual checking of the join condition happens
inside the reduce() function/method.

• Map-side join: One of the two files (the smaller one) is loaded into main
memory of each node on the cluster. Mappers process the other file, and
compare each record from that file to the records from the smaller file.
Reducer is used as a pass-through.

We describe each type of MapReduce join approach.

Reduce-Side Join

Reduce-side join performs the actual joining of the records inside the reduce()

method.

We describe the basic approach using a simple join condition R.x == S.y.
We will discuss generalizing the reduce-side join below.

Basic Idea. The basic approach for reduce-side join can be described as fol-
lows:

• Use two mappers to process source files R and S.

• Use R.x and S.y as the keys in the output of the mapper.

• The latter will cause outputs of both mappers with the same key value to
be combined in the same reducer instance.

• Reducer needs to output the pairs of records the originated from different
sources.

2



The coding trick. In order to properly organize the reduce() method, we
need to let reduce() know the origin of each record - whether it came from
R or from S. We use a simple coding trick - we include, as part of the value
the each map() function outputs, a simple code, that supplies to reduce() the
origin of the record.

The pseudocode below shows how to organize reduce-side join following the
principles expressed above.

function mapR(key, value)

// value has attribute "x" that will become our new key

newKey = value.x

newValue = {"source": 1, // 1 means the records came from R

"content": value}

emit(newKey, newValue)

end //mapR

function mapS(key, value)

// value has attribute "y" that will become our new key

newKey = value.y

newValue = {"source": 2, //2 mean the record came from S

"content": value}

emit(newKey, newValue)

end // mapS

//Reduce combines the output of both mappers

function reduce(key, List<Object> values)

//join condition R.x == S.y

rRecords = []

sRecords = []

for val in values do

if val.source == 1 then // val is from source R

rRecords.append(val.content)

if val.source == 2 then // val is from source S

sRecords.append(val.content)

end for

// we have split the input list into two sublists

// rRecords are records that came from R

// sRecords are records that came from S

for r in rRecords do

for s in sRecords do

emit(key, (r,s)) // each pair of objects needs to be returned

end for

end for

3



Beyond Equijoins. If the join condition is R.x1 == S.y1 and R.x2 == S.y2

and ... and R.xk = S.yk, then the map() functions can be updated to make
output keys (x1,...,xk) and (y1,...,yk) respectively.

For non-equijoin joins, things are more complex. There is a reduce-side join

solution for the case when the attributes involved in the join condition have
finitely many values. We will study this solution in detail when we discuss
matrix multiplication. In a nutshell, the solution is

• When a value R.x is observed in some record r, emit r for each value of
the key that can be paired with x.

For example, letR.x and S.y have values 0, 1, . . . , 10, and let the join condition
be R.x > S.y. Then given some value R.x = i, the record r will be joined with
any record s ∈ S where s.x ∈ 1, . . . , i− 1. So, we can write our mapR() function
as

function mapR(key, value)

// condition is R.x > S.y

newKey = value.x

newValue = {"source": 1,

"content":value}

for i = 1 to newKey-1 do

emit(i, newValue)

end for

end //mapR

(the second map() function uses the same idea).

Reduce-side Join: advantages and disadgantages

Advantages:

• Uses both map and reduce stages of MapReduce ”as intended”

• Both input source files can be of arbitrary size.

• Works very well when there are relatively few records from each source to
be joined.

• Works very well for equijoins and for cartesian-product-style joins with
limited number of values (”cartesian-product-style” means that some ac-
tivity needs to be performed for every, or almost every pair of key values).

Disadvantages:

• Does not work when join condition is over attributes with a lot of values,
and is not an equijoin.

• Reduce step can become a bottleneck if there are very few key values
(everything converges to running very few reduce instances).

4



Map-Side Join

The map-side join works by exploiting the idea of sideloading one source file into
main memory of each compute node on the cluster.

The map-side join is essentially a distributed version of a classical DBMS one
pass join algorithm that loads one source (relational table) into main memory,
and then scans through the second source (relational table) one block of records
at a time, searching, for each record in the second source, for matches with any
of the records from the first source.

For map-side join

• we split the larger file, and send each split to a separate compute node

• we ”sideload” the smaller file to each compute node’s main memory, mak-
ing it available for the mapper functions.

• The map() function performs a join of one record from the larger file with
all records of the smaller file.

• The reduce() function serves as an essential ”pass-through” and performs
no distinct workload.

Distribusted Cache

The file ”sideloading” in Hadoop is done using the notion of Distributed Cache.

Distributed Cache. In distributed computing frameworks, a distributed

cache is any information that is stored in the main memory of every compute
node and is available to use with any computation performed on the cluster.
The key feature of distributed cache is that the content on all nodes is the

same.

Distributed Cache in Hadoop. Hadoop takes a do-it-yourself approach
to distributed cache. Essentially, a org.apache.mapreduce.Job calss has a
addCacheFile()method that can be used to add a file on the HDFS system to
the list of files to become distributed cache.

However, beyond allowing the instance of the Job class to pass the file name
to the mapper class, Hadoop does nothing else. Everything else needs to be
manufactured using the methods in the mapper class.

Hadoop defines three core methods in the org.apache.hadoop.mapreduce.Mapper:
setup(), map(), and cleanup().

The map-side join uses setup() and map().

• setup() is used to load one of the data sources into the Distributed Cache.
Hadoop allows the developer to choose how to store the data - essentially,
distributed cache becomes an instance variable for the Mapper class, and
thus is accessible from the map() method.

• map() is used to perform the actual join. The record from the second file
is compared to the records in the distributed cache, and any matches are
emitted.

• cleanup()

Map-Side Join Using Distributed Cache

The pseudocode for a map-side join for an equijoin with the R.x == S.y join
condition looks as follows.

5



// assume S is the smaller file that gets stored in distributed cache

function setupMap(filename)

file = open(filename)

initialize dCache // dCache is a mapper class instance variable

// that is a collection class

for record in file do

key = record.y

value = record

dCache.insert((key,value))

end for

end //setupMap

// map processes key-value pairs from R

function map(key, value, dCache) // we add dCache as a parameter for clarity

newKey = value.x

matches = dCache.find(newKey) // assume find() returns all records that

// are indexed under the value "newKey", i.e. value.x

for rec in matches do // output one joined record per match

emit(newKey, (value, rec))

end for

end // map

function reduce(key, List<Object> values)

for val in values do

emit(null, val) // or emit(val, null)

// or emit(key, val) if you want results sorted by key

end for

end //reduce

Map-side Join: advantages and disadvantages

Advantages.

• Works for any join condition.

• Both map and reduce are distributed.

• Implements a well-known join algorithm.

Disadvantages

• One source file must fit in main memory of the compute nodes. This is
probably the biggest limitation on the use of map-side join.

• reduce() is distributed, but does not really do anything. In some cases
it can be made to perform projection on each output record.

6


