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A single spark can start a prairie fire!

Welcome to our Learning Apache Spark with Python note! In these note, you will learn a wide array of
concepts about PySpark in Data Mining, Text Mining, Machine Leanring and Deep Learning. The PDF
version can be downloaded from HERE.

CONTENTS 1



Learning Apache Spark with Python, Release v1.0

2 CONTENTS



CHAPTER
ONE

PREFACE

1.1 About

1.1.1 About this note

This is a shared repository for Learning Apache Spark Notes. The first version was posted on Github in
[Feng2017]. This shared repository mainly contains the self-learning and self-teaching notes from Wengqiang
during his IMA Data Science Fellowship.

In this repository, I try to use the detailed demo code and examples to show how to use each main functions.
If you find your work wasn’t cited in this note, please feel free to let me know.

Although I am by no means an data mining programming and Big Data expert, I decided that it would be
useful for me to share what I learned about PySpark programming in the form of easy tutorials with detailed
example. I hope those tutorials will be a valuable tool for your studies.

The tutorials assume that the reader has a preliminary knowledge of programing and Linux. And this
document is generated automatically by using sphinx.

1.1.2 About the authors

* Wengiang Feng
— Data Scientist and PhD in Mathematics
— University of Tennessee at Knoxville
— Email: von198 @gmail.com

* Biography

Wengiang Feng is Data Scientist within DST’s Applied Analytics Group. Dr. Feng’s responsibilities
include providing DST clients with access to cutting-edge skills and technologies, including Big Data
analytic solutions, advanced analytic and data enhancement techniques and modeling.

Dr. Feng has deep analytic expertise in data mining, analytic systems, machine learning algorithms,
business intelligence, and applying Big Data tools to strategically solve industry problems in a cross-
functional business. Before joining DST, Dr. Feng was an IMA Data Science Fellow at The Institute
for Mathematics and its Applications (IMA) at the University of Minnesota. While there, he helped
startup companies make marketing decisions based on deep predictive analytics.



https://www.ima.umn.edu/2016-2017/SW1.23-3.10.17
http://sphinx.pocoo.org
mailto:von198@gmail.com
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1.2

Dr. Feng graduated from University of Tennessee, Knoxville, with Ph.D. in Computational Mathe-
matics and Master’s degree in Statistics. He also holds Master’s degree in Computational Mathematics
from Missouri University of Science and Technology (MST) and Master’s degree in Applied Mathe-
matics from the University of Science and Technology of China (USTC).

Declaration

The work of Wengiang Feng was supported by the IMA, while working at IMA. However, any opin-
ion, finding, and conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of the IMA, UTK and DST.

Motivation for this tutorial

I was motivated by the IMA Data Science Fellowship project to learn PySpark. After that I was impressed
and attracted by the PySpark. And I foud that:

1.
2.

1.3

It is no exaggeration to say that Spark is the most powerful Bigdata tool.

However, I still found that learning Spark was a difficult process. I have to Google it and identify
which one is true. And it was hard to find detailed examples which I can easily learned the full
process in one file.

. Good sources are expensive for a graduate student.

Acknowledgement

At here, I would like to thank Ming Chen, Jian Sun and Zhongbo Li at the University of Tennessee at
Knoxville for the valuable disscussion and thank the generous anonymous authors for providing the detailed
solutions and source code on the internet. Without those help, this repository would not have been possible
to be made. Wengiang also would like to thank the Institute for Mathematics and Its Applications (IMA) at
University of Minnesota, Twin Cities for support during his IMA Data Scientist Fellow visit.

1.4

Feedback and suggestions

Your comments and suggestions are highly appreciated. I am more than happy to receive corrections, sug-
gestions or feedbacks through email (wfengl @utk.edu) for improvements.
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CHAPTER
TWO

WHY SPARK WITH PYTHON ?

Note: Sharpening the knife longer can make it easier to hack the firewood — old Chinese proverb

I want to answer this question from the following two parts:

2.1 Why Spark?

I think the following four main reasons form Apache Spark™ official website are good enough to convince
you to use Spark.

1. Speed
Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Apache Spark has an advanced DAG execution engine that supports acyclic data flow and in-memory
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Figure 2.1: Logistic regression in Hadoop and Spark
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2. Ease of Use
Write applications quickly in Java, Scala, Python, R.

Spark offers over 80 high-level operators that make it easy to build parallel apps. And you can use it
interactively from the Scala, Python and R shells.



http://spark.apache.org/
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3. Generality
Combine SQL, streaming, and complex analytics.

Spark powers a stack of libraries including SQL and DataFrames, MLIib for machine learning,
GraphX, and Spark Streaming. You can combine these libraries seamlessly in the same application.

Apache Spark Core

Figure 2.2: The Spark stack

4. Runs Everywhere

Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including
HDEFS, Cassandra, HBase, and S3.
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Figure 2.3: The Spark platform
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2.2 Why Spark with Python (PySpark)?

No matter you like it or not, Python has been one of the most popular programming languages.

KDnuggets Analytics, Data Science, Machine
Learning Software Poll, top tools share, 2015-2017
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Figure 2.4: KDnuggets Analytics/Data Science 2017 Software Poll from kdnuggets.
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CHAPTER
THREE

CONFIGURE RUNNING PLATFORM

Note: Good tools are prerequisite to the successful execution of a job. — old Chinese proverb

A good programming platform can save you lots of troubles and time. Herein I will only present how to
install my favorite programming platform and only show the easiest way which I know to set it up on Linux
system. If you want to install on the other operator system, you can Google it. In this section, you may learn
how to set up Pyspark on the corresponding programming platform and package.

3.1 Run on Databricks Community Cloud

If you don’t have any experience with Linux or Unix operator system, I would love to recommend you to
use Spark on Databricks Community Cloud. Since you do not need to setup the Spark and it’s totally free
for Community Edition. Please follow the steps listed below.

1. Sign up a account at: https://community.cloud.databricks.com/login.html

2. Sign in with your account, then you can creat your cluster(machine), table(dataset) and
notebook(code).

3. Create your cluster where your code will run

4. Import your dataset

Note: You need to save the path which appears at Uploaded to DBFS: /File-
Store/tables/05rmhuqv1489687378010/. Since we will use this path to load the dataset.

5. Creat your notebook



https://community.cloud.databricks.com/login.html
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_,a"j € Databricks-Signin x '\ | @z |

&« C {Y | & secure | https;//community.cloud.databricks.com/loginhEml ? ¥ = O &
! Apps W Bookmarks Bmjob [ Foreign Mationa [ The FORTRANFPr [ Fortran Tutorial: & Usingthecluster &G »

€databricks

€ Sign In to Databricks

& wiengl@utk.edu

Forgot Password?

New to Databricks? Sign Up.
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/ @ Databricks x W\ | Gemme |
o —

€& > C (| & secure | hitps;//community.cloud.databricks.com/?70=4622560542654492 W = O ® 3 :
i Apps “ Bookmarks Bmjob [} Foreign Nationa [} The FORTRANPr [} Fortran Tutorial: & Usingthecluster G [ {& Attachments »

@ OuUpgrade 7 &
Community Edition (2.45)
€databricks

Featured Notebooks

g g

Introduction to Apache Spark on Databricks Databricks for Data Scientists Introduction to Structured Streaming

New Documentation What's new?

[Z Notebook (' Databricks Guide « Automatic termination of clusters
@ Python, R, Scala, SQL « Autoscaling local storage with EBS

a Cluster & Importing Data =)

8 Table Latest release notes

& Library Open Recent

[2) Databricks for Data Scientists

[@ linearRegression

Send Feedback

/ @& CreateCluster-Da' x | | @zeree |
J ]
<« C {Y & secure | https;//community.cloud.databricks.com/?0=4622560542654492#create/cluster | = O &
©if Apps % Bookmarks B job [ Foreign Nationa [ The FORTRAN P [} Fortran Tutorial: & Usingthecluster & [d & Attachments »
Create Cluster ? a
New Cluster  cane fRs—
Cluster Name
MLmachine

Databricks Runtime Version @

Spark 2.1 (Auto-updating, Scala 2.10) v
Instance

Free 6GB Memory: As a Community Edition user, your cluster will automatically terminate after an idle period of two hours.
For more configuration options, please upgrade your Databricks subscription.

AWS  Spark

Awvailability Zone @

ar

us-west-2¢

Send Feedback
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/ @ CreateTable-Data x \\
|,

&« C () @& Secure | https;//community.cloud.databricks.com/70-4622560542654492#create/table T R = QO & 3 H
X Apps 7 Bookmarks Bm job [J Foreign Nationa [ The FORTRANPr [3 Fortran Tutorial- & Usingthecluster & i & Attachments »
=+ Create Table Create Table 2 &
Qs
88 advertising_csv Data- Import
& crab
A praedicat Data Source File M

58 raw_classified_bt File(s)

Drop file or click here to upload

Send Feedback

Create Table-Datal x | @mamme |
v
&« C {) | & secure | https;//community.cloud.databricks.com/?0=4622560542654492 #create/table T A = O ¢ 3 i
i Apps % Bookmarks Bmjob [3 Foreign Mationa [J The FORTRANP: [ FortranTutorial: & Usingthecluster & [ & Attachments @ Renegade Army »
Create Table ? a
File(s)
Heart (1).csv
19.9 KB
Remove file
Uploaded to DBFS @ /FileStore/tables/nlqogm7b1495157186117 /Heart__1_-466d4.csv
Previ able
Table Details
Previewing table
Table name
heart _c0 Age Sex ChestPain RestBP
STRING v STRING v STRING v STRING v STRING v
File type
CsV v
Column Delimiter 1 63 1 typical 145

[#] First row is header
2 67 1 asymptomatic 160

Send Feedback
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,I‘ Databricks X !

« c 0O l @ Secure | https;//community.cloud.databricks.com/?0=4622560542654492# T ﬁ] = 0O ¢ 9 B w
2 Apps % Bookmarks Bm job [ Foreign Nationa [J TheFORTRANPr [ Fortran Tutorial: & Usingthecluster & {@ Attachments @ Renegade Army »

Create Notebook

Name | test

Language | Python

Cluster | MLmachine (6 GB, Failed to atta ¥

Send Feedback

,! @ linearRegression- | x !D

< c O [ﬂ Secure | https;//community.cloud.databricks.com/?0=4622560542654492#notebook/2243073456667275/command/201248104401; § ﬁ] =) O ® 9 £ w &
i Apps % Bookmarks mjob [3 Foreign Nationa [ The FORTRANPr [3 Fortran Tutorial: & uUsingthecluster & {@ Attachments @ Renegade Army »
linearRegression (pyten) o 7 &
&haDetached~ [EFile~  EalView: Code~ @ Permissions @ Run All & Clear Results [ Publish &, Comments ‘D Revision history
cmd 1
Ll v = %

1.Linear Regression with PySpark on Databricks

@ Author: Wengiang Feng

Cmd 2
Set up SparkSession
cmd 3

1 from pyspark.sql import SparkSession

2

3 spark = SparkSession \

4 .builder

5 .appName ("Python Spark Linear Regression Example") \
6 .config("spark.some.config.option", "some-value") \
7 .getOrCreate()

Command took ©.16 seconds -- by wfengléutk.edu at 4/2/2017, 11:12:21 PM on MLmachine

cmd 4

2. Load dataset

cmd 5 + B
1 df = spark.read.format('com.databricks.spark.csv').\
2 options (header="true', \
3 inferschema="'true').\
4 load("/FileStore/tables/05rmhuqvl489687378818/", header= True)

| Send Feedback |

3.1. Run on Databricks Community Cloud 13
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After finishing the above 5 steps, you are ready to run your Spark code on Databricks Community Cloud. I
will run all the following demos on Databricks Community Cloud. Hopefully, when you run the demo code,
you will get the following results:

-t +———— o +———— +
| _cO0| TV |Radio|Newspaper|Sales|
-t +———— o +————= +
[ 11230.1] 37.8] 69.2] 22.1|
| 2] 44.5] 39.3] 45.1] 10.4]
| 3] 17.2] 45.9] 69.3] 9.3
| 4]1151.5| 41.3] 58.5] 18.5]
| 5]180.8| 10.8] 58.4] 12.9]
-t +———— o +————— +

only showing top 5 rows

|-— _c0: integer (nullable = true)

|-— TV: double (nullable = true)

|-— Radio: double (nullable = true)

| —— Newspaper: double (nullable = true)
|-— Sales: double (nullable = true)

3.2 Configure Spark on Mac and Ubuntu

3.2.1 Installing Prerequisites

I will strongly recommend you to install Anaconda, since it contains most of the prerequisites and support
multiple Operator Systems.

1. Install Python

Go to Ubuntu Software Center and follow the following steps:

1. Open Ubuntu Software Center

2. Search for python

3. And click Install

Or Open your terminal and using the following command:

sudo apt-get install build-essential checkinstall

sudo apt-get install libreadline-gplv2-dev libncurseswb-dev libssl-dev
libsglite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

sudo apt—-get install python

sudo easy_install pip

sudo pip install ipython

14 Chapter 3. Configure Running Platform
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3.2.2 Install Java

Java is used by many other softwares. So it is quite possible that you have already installed it. You can by
using the following command in Command Prompt:

java -version

Otherwise, you can follow the steps in How do I install Java for my Mac? to install java on Mac and use the
following command in Command Prompt to install on Ubuntu:

sudo apt-add-repository ppa:webupd8team/java
sudo apt—-get update
sudo apt-get install oracle-java8-installer

3.2.3 Install Java SE Runtime Environment

I installed ORACLE Java JDK.

Warning: Installing Java and Java SE Runtime Environment steps are very important, since
Spark is a domain-specific language written in Java.

You can check if your Java is available and find it’s version by using the following command in Command
Prompt:

java -version

If your Java is installed successfully, you will get the similar results as follows:

java version "1.8.0_131"
Java (TM) SE Runtime Environment (build 1.8.0_131-bll)
Java HotSpot (TM) 64-Bit Server VM (build 25.131-bll, mixed mode)

3.2.4 Install Apache Spark

Actually, the Pre-build version doesn’t need installation. You can use it when you unpack it.
1. Download: You can get the Pre-built Apache Spark™ from Download Apache Spark™.
2. Unpack: Unpack the Apache Spark™ to the path where you want to install the Spark.

3. Test: Test the Prerequisites: change the direction
spark—#.#.#-bin-hadoop#.#/bin and run

. /pyspark

Python 2.7.13 |Anaconda 4.4.0 (x86_64)| (default, Dec 20 2016, 23:05:08)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://anaconda.org

Using Spark’s default log4j profile: org/apache/spark/logd4j-defaults.properties

3.2. Configure Spark on Mac and Ubuntu 15
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Setting default log level to "WARN".

To adjust logging level use sc.setLoglevel (newLevel). For SparkR,

use setLoglLevel (newlLevel) .

17/08/30 13:30:12 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
17/08/30 13:30:17 WARN ObjectStore: Failed to get database global_temp,
returning NoSuchObjectException

Welcome to

/o /o
NN/ N/ _ T

/e IN\N_,_/_/ /_/\_\ version 2.1.1
/_/

/

Using Python version 2.7.13 (default, Dec 20 2016 23:05:08)
SparkSession available as ’spark’.

3.2.5 Configure the Spark

1. Mac Operator System: open your bash_profile in Terminal

vim ~/.bash_profile

And add the following lines to your bash_profile (remember to change the path)

# add for spark

export SPARK HOME=your_spark_installation_path
export PATH=S$PATH:S$SPARK_HOME/bin:$SPARK_HOME/sbin
export PATH=$PATH:S$SPARK_HOME/bin

export PYSPARK_DRIVE_PYTHON="jupyter"

export PYSPARK_DRIVE_PYTHON_OPTS="notebook"

At last, remember to source your bash_profile

source ~/.bash_profile

2. Ubuntu Operator Sysytem: open your bashrc in Terminal

vim ~/.bashrc

And add the following lines to your bashrc (remember to change the path)

# add for spark

export SPARK HOME=your_spark_installation_path
export PATH=S$PATH:S$SPARK_HOME/bin:S$SPARK_HOME/sbin
export PATH=SPATH:S$SPARK_HOME/bin

export PYSPARK_DRIVE_PYTHON="jupyter"

export PYSPARK_DRIVE_PYTHON_OPTS="notebook"

At last, remember to source your bashrc

source ~/.bashrc

16 Chapter 3. Configure Running Platform
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3.3 Configure Spark on Windows

Installing open source software on Windows is always a nightmare for me. Thanks for Deelesh Mandloi.
You can follow the detailed procedures in the blog Getting Started with PySpark on Windows to install the
Apache Spark™ on your Windows Operator System.

3.4 PySpark With Text Editor or IDE

3.4.1 PySpark With Jupyter Notebook

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to write and run your PySpark Code in Jupyter notebook.

File 'Edit v

x \ | @zzme |

/ = Home x /' TestPySpark
C 1} | ® localhost:8885/notebooks/Test%20PySpark.ipynb =m0 e oe
i Apps M jobs MM Spark M math119 % Bookmarks B job () CorporatePerks Bd [4=12012 , [ Foreign Nationz [ The FORTRAN P [} Fortran Tutoria »
: JUpyter Test PySpark Last Checkpoint: an hour ago (autosaved) ﬁ
File Edit View Insert Cell Kemet Help ‘ Python 2 O
+ 2 A B 4 ¥ MW B C  cCode v | E1 | CellToolbar

In [1]: ## set up SparkSession
from pyspark.sql import SparkSession

spark = SparkSession \

.builder

.appName("Python Spark SQL basic example") \
.config("spark.some.config.option”, "some-value") \
.getOrCreate()

df = spark.read.format('com.databricks.spark.csv').\
options(header="true', \
inferschema="true').\
load("/home/feng/Spark/Code/data/Advertising.csv”,header=True)

df.show(5)

df.printSchema()

EEREL SR Femm-- L EREEREE RS R +
|_col TV|Radio|Newspaper|Sales|
B e B R e +
| 1]230.1] 37.8| 69.2] 22.1|
| 2| 44.5] 39.3| 45.1| 10.4|
| 3] 17.2] 45.9]| 69.3| 9.3|
| 4|151.5] 41.3] 58.5| 18.5]
| 5|180.8] 10.8| 58.4| 12.9]
EEEEE TR Homm- R Hemmm- +

only showing top 5 rows

root
|-- _c@: integer (nullable = true)
|-- TV: double (nullable = true)
| -- Radio: double (nullable = true)
| -- Newspaper: double (nullable = true)
| -- Sales: double (nullable = true)

ITnrl1:

3.4.2 PySpark With Apache Zeppelin

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to write and run your PySpark Code in Apache Zeppelin.

3.3. Configure Spark on Windows 17
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localhost:8080/#/notebook/2CTAHCNZD - Google Chrome

@ localhost:8080/#/rn x \\|
€ > C {1 | ® localhost:8080/#t/notebook/2CTAHCNZD t|m 0O * 0De ® ™

I Apps % Bookmarks B house M Spark B dataMining @ Python Bm git B Recommender @M H20 W textMining WM stock  Workdaydst-si & »

_@ Zeppelin Notebook ~  Job Search your Notes anonymous

test cliElsas Boltaw - T o S a defali-

o - spark.read. format("con.databricks. spark.csv').\
‘options(header="true’, \
inferschema="true').\
Toad("/home fFeng/Dropbox MyTutorial /LearningApachespark/doc /data/bank.csv”  header=True);

nymous at Sej er 242017, 403:16 PM. (o ed

sspark. pyspark NISHED [> 3¥ 5
df .show(4)
P S— FE— FE— S SU— S
|age| job|marital|education|default|balance|housing]loan| contact|day|month|duration|campaign|pdays|previous|
S —— S S PN PN SRR —— S —— E—
| 38|unemployed|married| primary| ne| 1787] no| nelcellular| 19] oct] 79| 1| -1 8] unknown| no|
| 33| services|married|secondary]| no| 4789| yes| yes|cellular| 11| may| 228| 1| 339] 4] failure| no|
| 35|management| single| tertiary| nol 1358]  yes| nolcellular| 16] apr| 185] 1] 330] 1] failure] no|
| 38|management |married| tertiary| nol 1476  yes| yes| unknon| 3] jun| 198] 4 -1 8] unknown] no|
P — S P —— S—
only showing top 4 rows
T 2017,414:43 PM
#spark. pyspark NISHED [> 35 B &
df .registerTenpTable( bank™)
#sgl FINISHED i E g %sgl [ 35 @ & #sgl NISHED [> 3% B &
select age, count(1) value P select age, count(1) walue select age, count(1) value
From bank From bank Fron bank
where age < ${maxAge-26} where age < 30 where marital="${marital=single,single|divorced|married}”
group by age group by age aroup by age
order by age order by age
maxAge B EI - | & |~| settings~ marital
30 single v
®19 20 @21 2 @23 24 @25
26 @27 28 @29
[::: TR EI [ & |~ | settings = B |l 3 &~ | settings ~
919 20 @21 2 o= 24 @5 @Stacked OStream O Expanded@value
2% @27 28 @20 105
0
19 40 60 69
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3.4.3 PySpark With Sublime Text

After you finishing the above setup steps in Configure Spark on Mac and Ubuntu, then you should be good
to use Sublime Text to write your PySpark Code and run your code as a normal python code in Terminal.

python test_pyspark.py

Then you should get the output results in your terminal.

) feng@Ffeng-ThinkPad: ~/Spark/Code

to bind to another address
17/05/21 19:12:47 WARN Utils: Service 'SparkUI' could not bin
d on port 4840. Attempting port 4041.

pyspark.sql Sparksession 17/05/21 19:12:47 WARN Utils: Service 'SparkUI' could not bin

d on port 4841. Attempting port 4042.
spark = SparkSession \

only showing top 5 rows

root
|-- _c@: integer (nullable

|__

|-- Radio: double (nullabl

|-- Newspaper: double (nullable = true)
|-- Sales: double (nullable = true)

3 Line 16, Column 38 Tab Size: 4 feng@feng-ThinkPad:~/spark/codes [

3.4.4 PySpark With Eclipse

If you want to run PySpark code on Eclipse, you need to add the paths for the External Libraries for your
Current Project as follows:

1. Open the properties of your project
2. Add the paths for the External Libraries

And then you should be good to run your code on Eclipse with PyDev.

3.5 Set up Spark on Cloud

Following the setup steps in Configure Spark on Mac and Ubuntu, you can set up your own cluster on the
cloud, for example AWS, Google Cloud. Actually, for those clouds, they have their own Big Data tool. Yon
can run them directly whitout any setting just like Databricks Community Cloud. If you want more details,
please feel free to contact with me.

3.5. Set up Spark on Cloud 19
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. IR R R RN v v v - Quick Access © & Java [@ pypev|
[2 PyDev Package Explorer 22 BE% » ¥ - DO [) testPyspark & = g
P IMA SparkSession

b & Leetcode

b & math563

New
Go Into

B console =
PyDev No consoles to display at this time.

Configure

| Properties i

w5 1item selected

0 Properties for

type filter text & PyDev - PYTHONPATH . v -
> Resource The final PYTHONPATH used For a launch is composed of the paths
Builders defined here, joined with the paths defined by the selected interpreter.
Project References @Source Folders | & External Libraries | @ String Substitution Variables
PyDev - Interpreter/¢ External libraries (source folders/zips/jars/eggs) outside of the workspace.

PYTHOR

Run/Debug Settings

When using variables, the final paths resolved must be filesystem absolute.

> Ta'sk. Repository Changes in external libraries are not monitored, so, the 'Force restore internal info'
wikiText should be used if an external library changes.
& /opt/spark/python Add source folder

Add zip/jar/eqgg

Add based on variable

Remove

Force restore internal info

Restore Defaults Apply

@' Cancel OK
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il @3 F-0 Qi i H B O - Quick Access ® & Java [@ pyDev
[# PyDev Package Explorer &2 5 % 3 ¥ = B [ projecti [# testPyspark 52 [ conf = B8
e IMA KSession

» 5 Leetcode
P& mathse3
v & Pyspark
@ Invalid external source folder specified: fopt/spark
@ Invalid external source folder specified: fopt/spark/python
@ Invalid external source folder specified: fopt/spark/python/lib
&
b python (/usr/bin/python)
» & redhat
b stat537
b & STATS7S
» & Theano
@ dataMining
& matplot

@ tensorFlow

© console 52 X % @ 2 B=EE 22-0- =0

Writable Insert 16:31

3.6 Demo Code in this Section

The code for this section is available for download test_pyspark, and the Jupyter notebook can be download
from test_pyspark_ipynb.

* Python Source code

## set up SparkSession
from pyspark.sqgl import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark SQL basic example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

df = spark.read.format (' com.databricks.spark.csv’) .\
options (header='"true’, \
inferschema='true’) .\
load("/home/feng/Spark/Code/data/Advertising.csv", header=True)

df.show (5)
df .printSchema ()

3.6. Demo Code in this Section 21
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CHAPTER
FOUR

AN INTRODUCTION TO APACHE SPARK

Note: Know yourself and know your enemy, and you will never be defeated — idiom, from Sunzi’s Art
of War

4.1 Core Concepts

Most of the following content comes from [Kirillov2016]. So the copyright belongs to Anton Kirillov. 1
will refer you to get more details from Apache Spark core concepts, architecture and internals.

Before diving deep into how Apache Spark works, lets understand the jargon of Apache Spark

* Job: A piece of code which reads some input from HDFS or local, performs some computation on the
data and writes some output data.

» Stages: Jobs are divided into stages. Stages are classified as a Map or reduce stages (Its easier to
understand if you have worked on Hadoop and want to correlate). Stages are divided based on com-
putational boundaries, all computations (operators) cannot be Updated in a single Stage. It happens
over many stages.

 Tasks: Each stage has some tasks, one task per partition. One task is executed on one partition of data
on one executor (machine).

* DAG: DAG stands for Directed Acyclic Graph, in the present context its a DAG of operators.
* Executor: The process responsible for executing a task.
* Master: The machine on which the Driver program runs

* Slave: The machine on which the Executor program runs

4.2 Spark Components

1. Spark Driver

* separate process to execute user applications

23
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Driver Program

SparkContext

|

Cluster Manager

J
[ ]

4 Node N\ Nodes ) 4 Node, )

| : l : l :

Executor Executor Executor

| Cache | | Cache | . | Cache |

Task. Task Task. Task Task. Task

|"Tasl-c; ;Tasl-c.] 1 |'.Tasl-c; ;Tasl-c'] 1 |'.Tasl-c; ;Tasl-c'] 1
- VAN \. S
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creates SparkContext to schedule jobs execution and negotiate with cluster manager

. Executors

run tasks scheduled by driver

store computation results in memory, on disk or off-heap
interact with storage systems

. Cluster Manager

Mesos
YARN

Spark Standalone

Spark Driver contains more components responsible for translation of user code into actual jobs executed
on cluster:

User Program

Driver

RDD graph

val sc =

val rdd =

new SparkContext(conf)f

sc.cassandraTable(...) E

.mapf...)
filter{...)
heyBy(...)
.reduceByKey({...)
.cache()

DAGScheduler

TaskScheduler

SparkContext

SchedulerBackend

Executor
Cluster
Manager Threads
B Block
Manager

— represents the connection to a Spark cluster, and can be used to create RDDs, accu-

mulators and broadcast variables on that cluster

DAGScheduler

— computes a DAG of stages for each job and submits them to TaskScheduler deter-
mines preferred locations for tasks (based on cache status or shuffle files locations)

and finds minimum schedule to run the jobs

TaskScheduler

— responsible for sending tasks to the cluster, running them, retrying if there are failures,
and mitigating stragglers

SchedulerBackend

— backend interface for scheduling systems that allows plugging in different implemen-
tations(Mesos, YARN, Standalone, local)

4.2. Spark Components
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* BlockManager

— provides interfaces for putting and retrieving blocks both locally and remotely into

various stores (memory, disk, and off-heap)

4.3 Architecture

4.4 How Spark Works?

Spark has a small code base and the system is divided in various layers. Each layer has some responsibilities.
The layers are independent of each other.

The first layer is the interpreter, Spark uses a Scala interpreter, with some modifications. As you enter
your code in spark console (creating RDD’s and applying operators), Spark creates a operator graph. When
the user runs an action (like collect), the Graph is submitted to a DAG Scheduler. The DAG scheduler
divides operator graph into (map and reduce) stages. A stage is comprised of tasks based on partitions of
the input data. The DAG scheduler pipelines operators together to optimize the graph. For e.g. Many map
operators can be scheduled in a single stage. This optimization is key to Sparks performance. The final
result of a DAG scheduler is a set of stages. The stages are passed on to the Task Scheduler. The task
scheduler launches tasks via cluster manager. (Spark Standalone/Yarn/Mesos). The task scheduler doesn’t
know about dependencies among stages.

RDD Objects DAGScheduler TaskScheduler Worker
| |.. Cluster —
e manager Threads

' -| | Taskset. Task —rs

J € - manager

rddl.join(rdd2)

launch tasks via execute tasks

split graph into

-groupBy(..)
Tilter(l)

build operator DAG

stages of tasks

cluster manager

submit each retry failed or store and serve
stage as ready straggling tasks blocks

stage

failed

A
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CHAPTER
FIVE

PROGRAMMING WITH RDDS

Note: If you only know yourself, but not your opponent, you may win or may lose. If you know
neither yourself nor your enemy, you will always endanger yourself — idiom, from Sunzi’s Art of War

RDD represents Resilient Distributed Dataset. An RDD in Spark is simply an immutable distributed
collection of objects sets. Each RDD is split into multiple partitions (similar pattern with smaller sets),

which may be computed on different nodes of the cluster.

5.1 Create RDD

Usually, there are two popular way to create the RDDs: loading an external dataset, or distributing a set
of collection of objects. The following examples show some simplest ways to create RDDs by using
parallelize () fucntion which takes an already existing collection in your program and pass the same

to the Spark Context.
1. Byusing parallelize ( ) fucntion

from pyspark.sgl import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

df = spark.sparkContext.parallelize([(1, 2, 3, 'a b c’),
(4, 5, 6, '"d e £t"),

(7, 8, 9, "g h i")]) .toDF(['coll’, ’'col2’, '"col3’,’"cold’])

Then you will get the RDD data:

df.show ()

o ———— +
|[coll|col2|col3| cold|
et +
\ 1] 2 3la b ¢
\ 4| 5] 6|d e f|
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from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark create RDD example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

myData = spark.sparkContext.parallelize([(1,2), (3,4), (5,6), (7,8), (9,10)1)

Then you will get the RDD data:
myData.collect ()
((L, 2), (3, 4), (5, 6), (7, 8), (9, 10)]

2. By using createDataFrame ( ) function

from pyspark.sqgl import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark create RDD example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

Employee = spark.createDataFrame ([

("17, "Joe’, 700007, "17),
("2", ’"Henry’, ’80000", '2"),
("37, ’"sam’, "60000", 2",
(747, ’'Max’, 900007, "17)1,

["Id’, ’'"Name’, ’'Sallary’,’DepartmentId’]

Then you will get the RDD data:

-t o o +
| Id| Name|Sallary|DepartmentId|
-t - o +
| 1] Joel|l 70000 | 1]
|  2|Henry| 80000 | 2|
| 3] Sam| 60000 | 2|
| 4] Max| 90000 | 1]
-t - Fo————— +

3. By using read and 1oad functions
1. Read dataset from .csv file

## set up SparkSession
from pyspark.sqgl import SparkSession
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spark = SparkSession \

.builder \
.appName ("Python Spark create RDD example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()
df = spark.read.format (' com.databricks.spark.csv’) .\
options (header='true’, \
inferschema='true’) .\
load ("/home/feng/Spark/Code/data/Advertising.csv", header=True)
df.show (5)

df .printSchema ()

Then you will get the RDD data:

f———t—— +————= fo——— F———— +
|_cO] TV |Radio|Newspaper|Sales|
fo——t +———— o +———— +
[ 1]1230.1| 37.8] 69.2] 22.1]
| 2] 44.5] 39.3] 45.1] 10.4]
| 3] 17.2] 45.9] 69.3] 9.3]
[ 4]151.5| 41.3] 58.5| 18.5]
| 5/180.8| 10.8] 58.4| 12.9]
et e e o +

only showing top 5 rows

root
|-— _c0: integer (nullable = true)
|-— TV: double (nullable = true)
|-— Radio: double (nullable = true)
| —— Newspaper: double (nullable = true)
| -— Sales: double (nullable = true)

Once created, RDDs offer two types of operations: transformations and actions.
2. Read dataset from DataBase

## set up SparkSession
from pyspark.sqgl import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark create RDD example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

## User Information
user = ’'your_username’
pw = "your_password’

## Database information
table_name = ’'table_name’
url = ’jdbc:postgresqgl://##.###. . ###.##:5432/dataset?user="+user+’ spassword="+pw

5.1. Create RDD 29



Learning Apache Spark with Python, Release v1.0

properties ={’driver’: 'org.postgresgl.Driver’, ’'password’: pw,’user’:
df = spark.read. jdbc (url=url, table=table_name, properties=properties)
df.show (5)

df .printSchema ()

Then you will get the RDD data:

o fo—— fom o +
|_cO] TV |Radio|Newspaper|Sales|
ot o o +———— +
| 11230.1| 37.8]| 69.2| 22.1|
| 2] 44.5] 39.3| 45.11 10.4|
| 3] 17.2] 45.9] 69.3] 9.3]
| 41151.5] 41.3] 58.5] 18.5]
| 51180.8] 10.8]| 58.4] 12.9]
ot +———— fom +———— +

only showing top 5 rows

root
|-— _c0: integer (nullable true)
|-— TV: double (nullable = true)
|-— Radio: double (nullable = true)
| —— Newspaper: double (nullable = true)
|-— Sales: double (nullable = true)

user}

Note:

Reading tables from Database needs the proper drive for the corresponding Database. For
example, the above demo needs org.postgresqgl.Driver and you need to down-
load it and put it in ‘‘jars‘‘ folder of your spark installation path. [ download
postgresqgl-42.1.1. jar from the official website and put it in jars folder.

3. Read dataset from HDFS

from pyspark.conf import SparkConf
from pyspark.context import SparkContext
from pyspark.sql import HiveContext

sc= SparkContext (' local’,’example’)

hc = HiveContext (sc)

tfl = sc.textFile("hdfs://cdhstltest/user/data/demo.CSV")
print (tfl.first ())

hc.sgl ("use intg_cme_w")
spf = hc.sgl ("SELECT x FROM spf LIMIT 100")
print (spf.show(5))
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5.2 Spark Operations

Warning: All the figures below are from Jeffrey Thompson. The interested reader is referred to pyspark
pictures

There are two main types of Spark operations: Transformations and Actions.

— A__{Q/*‘%"
TRANSFORMATIONS

SpQr‘ll(\Z Operations = +

gy ACTIONS

Note: Some people defined three types of operations: Transformations, Actions and Shuffies.

5.2.1 Spark Transformations

Transformations construct a new RDD from a previous one. For example, one common transformation is
filtering data that matches a predicate.

5.2.2 Spark Actions

Actions, on the other hand, compute a result based on an RDD, and either return it to the driver program or
save it to an external storage system (e.g., HDFS).
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= easy g = medium

Essential Core & Intermediate Spark Operations

o General Math [ Statistical Set Theory [ Relational Data Structure [ 1/O
L)
.‘(\ g * map * sample + union + keyBy
.t‘! b * filter * randomSplit * intersection * zipWithIndex
AY -='_:|: » flatMap * subtract + zipWithUniquelD
= * mapPartitions + distinct * zipPartitions
Qx = mapPartitionsWithIndex * cartesian * coalesce
= * groupBy + zip * repartition
[ * sortBy - repartitionAndSortWithinPartitions
e * pipe
1=
—

= easy DO = medivm

Essential Core & Intermediate PairRDD Operations

s General Math [ Statistical Set Theory / Relational Data Structure
EY
i-&\ g » flatMapValues * sampleByKey * cogroup (=groupWith) « partitionBy
: * groupByKey * join
Y =T * reduceByKey * subtractByKey
qz * reduceByKeylocally * fullOuterJoin
as * foldByKey + leftOuterloin
= * aggregateByKey * rightOuterJoin
{Lb‘-‘ * sortByKey
— * combineByKey
a-ﬂ:
o=
—
o * reduce * count + takeOrdered * saveAsTextFile .
= = collect * takeSample * saveAsSequenceFile
=) * aggregate * max * saveAsObjectFile
— = fold * min * saveAsHadoopDataset
B = first * sum * saveAsHadoopFile
=T = take * histogram * saveAsNewAPIHadoopDataset
= forEach * mean * saveAsNewAPIHadoopFile
[ | s top * variance
H" * treelggregate * stdev
s treeReduce » sampleVariance
* forEachPartition * countApprox
s collectAsMap » countApproxDistinct
* keys * countByKey
"2 * wvalues * countByValue
o = countByValueApprox
— * countApproxDistinctByKey
: * countApproxDistinctByKey
=T * countByKeyApprox
* sampleByKeyExact
[}
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CHAPTER
SIX

STATISTICS PRELIMINARY

Note: If you only know yourself, but not your opponent, you may win or may lose. If you know
neither yourself nor your enemy, you will always endanger yourself — idiom, from Sunzi’s Art of War

6.1 Notations

* m : the number of the samples
* n : the number of the features
e y; : i-th label

e y=L3" v the mean of y.

6.2 Measurement Formula

* Mean squared error

In statistics, the MSE (Mean Squared Error) of an estimator (of a procedure for estimating an unobserved
quantity) measures the average of the squares of the errors or deviations—that is, the difference between the
estimator and what is estimated.

m

1 N
MSE = — % (4 — v)°

i=1

* Root Mean squared error

m
. 2
(yi - yi)
i=1

RMSE = vMSE =

* Total sum of squares
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In statistical data analysis the TSS (Total Sum of Squares) is a quantity that appears as part of a standard way
of presenting results of such analyses. It is defined as being the sum, over all observations, of the squared
differences of each observation from the overall mean.

m
TSS =Y (i —§)°
i=1
* Residual Sum of Squares
1 m
RSS = — Z (i — yi)?
i=1

* Coefficient of determination R2

6.3 Statistical Tests

6.3.1 Correlational Test

* Pearson correlation: Tests for the strength of the association between two continuous variables.

* Spearman correlation: Tests for the strength of the association between two ordinal variables (does
not rely on the assumption of normal distributed data).

* Chi-square: Tests for the strength of the association between two categorical variables.

6.3.2 Comparison of Means test

* Paired T-test: Tests for difference between two related variables.
* Independent T-test: Tests for difference between two independent variables.

* ANOVA: Tests the difference between group means after any other variance in the outcome variable
is accounted for.

6.3.3 Non-parametric Test
* Wilcoxon rank-sum test: Tests for difference between two independent variables - takes into account
magnitude and direction of difference.

» Wilcoxon sign-rank test: Tests for difference between two related variables - takes into account mag-
nitude and direction of difference.

» Sign test: Tests if two related variables are different — ignores magnitude of change, only takes into
account direction.
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CHAPTER
SEVEN

DATA EXPLORATION

Note: A journey of a thousand miles begins with a single step — idiom, from Laozi.

I wouldn’t say that understanding your dataset is the most difficult thing in data science, but it is really
important and time-consuming. Data Exploration is about describing the data by means of statistical and
visualization techniques. We explore data in order to understand the features and bring important features
to our models.

7.1 Univariate Analysis

In mathematics, univariate refers to an expression, equation, function or polynomial of only one variable.
“Uni” means “one”, so in other words your data has only one variable. So you do not need to deal with the
causes or relationships in this step. Univariate analysis takes data, summarizes that variables (attributes) one
by one and finds patterns in the data.

There are many ways that can describe patterns found in univariate data include central tendency (mean,
mode and median) and dispersion: range, variance, maximum, minimum, quartiles (including the interquar-
tile range), coefficient of variation and standard deviation. You also have several options for visualizing and
describing data with univariate data. Such as frequency Distribution Tables, bar Charts,
histograms, frequency Polygons,pie Charts.

The variable could be either categorical or numerical, I will demostrate the different statistical and visuliza-
tion techniques to investigate each type of the variable.

* The Jupyter notebook can be download from Data Exploration.

¢ The data can be downloaf from German Credit.

7.1.1 Numerical Variables

¢ Describe

The desctibe function in pandas and spark will give us most of the statistical results, such as min,
median, max, quartiles and standard deviation. With the help of the user defined function,
you can get even more statistical results.
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# selected varables for the demonstration

num_cols = [’Account Balance’,’No of dependents’]
df.select (num_cols) .describe () .show ()

o o o +
| summary | Account Balance| No of dependents|
- o ————— F————————— +
| count| 1000 | 1000 |
\ mean | 2.577]| 1.155]
| stddev|1.2576377271108936|0.36208577175319395]|
\ min | 1] 1]
\ max | 4 2|
o e o +

You may find out that the default function in PySpark does not include the quartiles. The following function
will help you to get the same results in Pandas

def describe_pd(df_in, columns, style):

Function to union the basic stats results and deciles

:param df_in: the input dataframe
:param columns: the cloumn name list of the numerical variable

:param style: the display style

:return : the numerical describe info. of the input dataframe

rauthor: MIng Chen and Wengiang Feng

remail: vonl98@gmail.com
if style ==
percentiles = [25, 50, 75]
else:
percentiles = np.array(range(0, 110, 10))
percs = np.transpose ([np.percentile(df_in.select (x).collect (), percentiles) for x in c«
percs = pd.DataFrame (percs, columns=columns)
percs [’/ summary’] = [str(p) + '%’ for p in percentiles]
spark_describe = df_in.describe () .toPandas ()
new_df = pd.concat ([spark_describe, percs],ignore_index=True)

new_df = new_df.round(2)
return new_df [ [’ summary’] + columns]

describe_pd (df, num_cols, 1)

o o ——————— o ————— +
| summary | Account Balance| No of dependents|
F—————— f——————————— fm————————— +
| count| 1000.0] 1000.0]|
| mean | 2.577| 1.155]
| stddev]|1.2576377271108936]0.362085771753194 |
\ min | 1.0] 1.0]
\ max | 4.0] 2.0]
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\ 25%| 1.0] 1.0]
\ 50% 2.0] 1.0]
\ 75% 4.0 1.0]
fom fom Fom e +

Sometimes, because of the confidential data issues, you can not deliver the real data and your clients may
ask more statistical results, such as deciles. You can apply the follwing function to achieve it.

describe_pd (df, num_cols, 2)

o o ——————— o —————— +
| summary | Account Balance| No of dependents|
= o —— fom e —— +
| count| 1000.0] 1000.0]|
\ mean | 2.577| 1.155]
| stddev|1.2576377271108936]0.362085771753194 |
| min | 1.0] 1.0]
\ max | 4.0] 2.0]
\ 0% | 1.0] 1.0]
\ 10% ] 1.0] 1.0]
\ 20% | 1.0] 1.0]
\ 30% | 2.0] 1.0]
\ 40% | 2.0] 1.0]
\ 50% | 2.0 1.0]
\ 60% | 3.0 1.0]
\ 70% | 4.0 1.0]
\ 80% | 4.0 1.0]
\ 90% | 4.0 2.0
\ 100% | 4.0 2.0
o= o o +

» Skewness and Kurtosis
This subsection comes from Wikipedia Skewness.

In probability theory and statistics, skewness is a measure of the asymmetry of the probability dis-
tribution of a real-valued random variable about its mean. The skewness value can be positive or
negative, or undefined.For a unimodal distribution, negative skew commonly indicates that the tail is
on the left side of the distribution, and positive skew indicates that the tail is on the right.

Consider the two distributions in the figure just below. Within each graph, the values on the right side
of the distribution taper differently from the values on the left side. These tapering sides are called
tails, and they provide a visual means to determine which of the two kinds of skewness a distribution
has:

1. negative skew: The left tail is longer; the mass of the distribution is concentrated on the right of
the figure. The distribution is said to be left-skewed, left-tailed, or skewed to the left, despite the
fact that the curve itself appears to be skewed or leaning to the right; left instead refers to the left
tail being drawn out and, often, the mean being skewed to the left of a typical center of the data.
A left-skewed distribution usually appears as a right-leaning curve.

2. positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of
the figure. The distribution is said to be right-skewed, right-tailed, or skewed to the right, despite
the fact that the curve itself appears to be skewed or leaning to the left; right instead refers to the
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right tail being drawn out and, often, the mean being skewed to the right of a typical center of
the data. A right-skewed distribution usually appears as a left-leaning curve.

This subsection comes from Wikipedia Kurtosis.

In probability theory and statistics, kurtosis (from Greek: xvp7, kyrtos or kurtos, meaning “curved,
arching”) is a measure of the “tailedness” of the probability distribution of a real-valued random
variable. In a similar way to the concept of skewness, kurtosis is a descriptor of the shape of a
probability distribution and, just as for skewness, there are different ways of quantifying it for a
theoretical distribution and corresponding ways of estimating it from a sample from a population.

A A

Negative Skew Positive Skew

from pyspark.sqgl.functions import col, skewness, kurtosis
df .select (skewness (var) , kurtosis (var)) .show ()

o o +
| skewness (Age (years)) |kurtosis (Age (years)) |
o e +
\ 1.0231743160548064 | 0.6114371688367672 |
o o +

Warning: Sometimes the statistics can be misleading!

F. J. Anscombe once said that make both calculations and graphs. Both sorts of output should be stud-
ied; each will contribute to understanding. These 13 datasets in Figure Same Stats, Different Graphs (the
Datasaurus, plus 12 others) each have the same summary statistics (X/y mean, x/y standard deviation, and
Pearson’s correlation) to two decimal places, while being drastically different in appearance. This work
describes the technique we developed to create this dataset, and others like it. More details and interesting
results can be found in Same Stats Different Graphs.

* Histogram

Warning: Histograms are often confused with Bar graphs!

The fundamental difference between histogram and bar graph will help you to identify the two easily is that
there are gaps between bars in a bar graph but in the histogram, the bars are adjacent to each other. The
interested reader is referred to Difference Between Histogram and Bar Graph.
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var

X
bins

"Age (years)’
datal [var]
np.arange (0,

100,

5.0)

plt.figure(figsize=(10,8))
# the histogram of the data

plt.

plt
plt
plt
plt.

fig.

hist (x, bins,

alpha=

0.8, histtype='bar’,

ec="black’,weights=np.zeros_like (x)

.xlabel (var)
.ylabel (" percentage’)
.xticks (bins)

show ()

savefig(var+".pdf",

bbox_inches="tight’)

color=’'gold’,

+ 100.

/ x.size)

20
15
[iF]
=]
]
=
a
& 10
5
0 5 0 15 X X XN F H £ B OB B B WM T OB OB W B
Age (years)
var = "Age (years)’
x = datal[var]
bins = np.arange (0, 100, 5.0)
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HAFRAFAHAAHARHARARHARHARFARFA A RHARHA AR RH AR EAAHA A RA A AR A AR H A
hist, bin_edges = np.histogram(x,bins,

weights=np.zeros_like(x) + 100. / x.size)
# make the histogram

fig = plt.figure(figsize=(20, 8))
ax = fig.add_subplot(l, 2, 1)

# Plot the histogram heights against integers on the x axis

ax.bar (range (len(hist)),hist,width=1,alpha=0.8,ec ='black’, color="gold’)
# # Set the ticks to the middle of the bars

ax.set_xticks ([0.5+1i for i,J in enumerate (hist)])

# Set the xticklabels to a string that tells us what the bin edges were
labels =[’{}’.format (int (bins[i+1])) for i, j in enumerate (hist)]
labels.insert (0,70")

ax.set_xticklabels (labels)

plt.xlabel (var)

plt.ylabel ("percentage’)

#H#AAEFAAAARAAHARAARAARAARARAA A AR AR AR RHARAAEA AR A AHA AR AR AR AHAAAAA
hist, bin_edges = np.histogram(x,bins) # make the histogram

ax = fig.add_subplot (1, 2, 2)
# Plot the histogram heights against integers on the x axis
ax.bar (range (len(hist)),hist,width=1,alpha=0.8,ec ='black’, color="gold’)

# # Set the ticks to the middle of the bars
ax.set_xticks ([0.5+1 for i,J in enumerate (hist)])

# Set the xticklabels to a string that tells us what the bin edges were

labels =[’{}’.format (int (bins[i+1])) for i,j in enumerate (hist)]

labels.insert (0,70")

ax.set_xticklabels (labels)

plt.xlabel (var)

plt.ylabel (' count’)

plt.suptitle('Histogram of {}: Left with percentage output;Right with count output’
.format (var), size=16)

plt.show()

fig.savefig(var+".pdf", bbox_inches=’"tight’)

Sometimes, some people will ask you to plot the unequal width (invalid argument for histogram) of the bars.
YOu can still achieve it by the follwing trick.

var = 'Credit Amount’

plot_data = df.select (var) .toPandas ()

x= plot_datalvar]

bins =[0,200,400,600,700,800,900,1000,2000,3000,4000,5000,6000,10000,25000]

hist, bin_edges = np.histogram(x,bins,weights=np.zeros_like(x) + 100. / x.size) # make the
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Histogram of Age (years). Left with percentage output;Right with count output

0 200
15 150
»
g -
T 5
8 g
B 100
5 =
[ [
0 5 1 15 0 B D B 4 45 W B OB VB H B D 0 5 1 15 0 B N B 4 4 0 B 0B W B DB D

Age (years) Age (years)

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot (1, 1, 1)

# Plot the histogram heights against integers on the x axis

ax.bar (range (len(hist)),hist,width=1,alpha=0.8,ec ='black’,color = "gold’)

# # Set the ticks to the middle of the bars
ax.set_xticks ([0.5+1 for i,7J in enumerate (hist)])

# Set the xticklabels to a string that tells us what the bin edges were
#labels =[’{}k’.format (int (bins[i+1]/1000)) for i, j in enumerate (hist) ]
labels =[’{}’ .format (bins[i+1]) for i, J in enumerate (hist) ]
labels.insert (0,70")

ax.set_xticklabels (labels)

#plt.text (-0.6, -1.4,70")

plt.xlabel (var)

plt.ylabel ('percentage’)

plt.show()

* Box plot and violin plot

Note that although violin plots are closely related to Tukey’s (1977) box plots, the violin plot can show more
information than box plot. When we perform an exploratory analysis, nothing about the samples could be
known. So the distribution of the samples can not be assumed to a normal distribution and usually when you
get a big data, the normal distribution will show some out liars in box plot.

However, the violin plots are potentially misleading for smaller sample sizes, where the density plots can
appear to show interesting features (and group-differences therein) even when produced for standard normal
data. Some poster suggested the sample size should larger that 250. The sample sizes (e.g. n>250 or ideally
even larger), where the kernel density plots provide a reasonably accurate representation of the distributions,
potentially showing nuances such as bimodality or other forms of non-normality that would be invisible or
less clear in box plots. More details can be found in A simple comparison of box plots and violin plots.
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x = df.select (var) .toPandas ()

fig = plt.figure(figsize=(20, 8))
ax = fig.add_subplot (1, 2, 1)
ax = sns.boxplot (data=x)

ax = fig.add_subplot(l, 2, 2)
ax = sns.violinplot (data=x)

Age (years) Age (years)

7.1.2 Categorical Variables

Compared with the numerical variables, the categorical variables are much more easier to do the exploration.
* Frequency table

from pyspark.sqgl import functions as F
from pyspark.sql.functions import rank, sum,col
from pyspark.sql import Window

window = Window.rowsBetween (Window.unboundedPreceding, Window.unboundedFollowing)
# withColumn (’Percent %’,F.format_string("$5.0f%%\n",col (’Credit_num’)*100/col (’total’))).
tab = df.select ([’age_class’,’Credit Amount’]) .\
groupBy ("age_class’) .\
agg (F.count (' Credit Amount’) .alias(’'Credit_num’),
F.mean (' Credit Amount’).alias(’Credit_avg’),
F.min (' Credit Amount’) .alias(’'Credit_min’),
F.max (' Credit Amount’) .alias (’'Credit_max’)) .\
withColumn (' total’, sum(col ('Credit_num’)) .over (window)) .\
withColumn (' Percent’,col (' Credit_num’)*100/col ('total’)) .\
drop (col ("total’))

fo— Fo— o Fom Fo— e +
|lage_class|Credit_num| Credit_avg|Credit_min|Credit_max|Percent |
o o o o o e +
| 45-54 | 12013183.0666666666666 | 338 | 12612 | 12.0|

44 Chapter 7. Data Exploration



Learning Apache Spark with Python, Release v1.0

| <25| 150 2970.733333333333| 276 | 15672 | 15.0]

\ 55-64| 56| 3493.660714285714| 385 15945 5.6]

\ 35-44 | 254 3403.771653543307| 250 15857 25.4|

\ 25-34] 397 3298.823677581864 | 343 | 18424 39.7]

\ 65+ | 2313210.1739130434785 | 571 14896 2.3

o Fom o Fom Fom F—— +
* Pie plot

# Data to plot
labels = plot_data.age_class

sizes = plot_data.Percent

colors = [’"gold’, ’'yellowgreen’, ’'lightcoral’,’blue’, ’lightskyblue’,’green’,’red’]
explode = (0, 0.1, 0, 0,0,0) # explode 1st slice

# Plot

plt.figure(figsize=(10,8))
plt.pie(sizes, explode=explode, labels=labels, colors=colors,
autopct="51.171%%", shadow=True, startangle=140)

plt.axis ('equal’)
plt.show()

* Bar plot

labels = plot_data.age_class
missing = plot_data.Percent
ind = [x for x, _ in enumerate (labels) ]

plt.figure(figsize=(10,8))
plt.bar (ind, missing, width=0.8, label='missing’, color='"gold’)

plt.xticks (ind, labels)
plt.ylabel ("percentage")

plt.show()

labels = ['missing’, ’'<25’, ’'25-347, ’'35-44', "45-547,'55-64"7,765+"]

missing = np.array([0.000095, 0.024830, 0.028665, 0.029477, 0.031918,0.037073,0.0266997])
man = np.array([0.000147, 0.036311, 0.038684, 0.044761, 0.051269, 0.059542, 0.054259])
women = np.array([0.004035, 0.032935, 0.035351, 0.041778, 0.048437, 0.056236,0.0480911)
ind = [x for x, _ in enumerate (labels)]

plt.figure(figsize=(10,8))

plt.bar (ind, women, width=0.8, label='women’, color=’'gold’, bottom=man+missing)
plt.bar (ind, man, width=0.8, label='man’, color='silver’, bottom=missing)
plt.bar(ind, missing, width=0.8, label="missing’, color=’#CD853F")

plt.xticks (ind, labels)
plt.ylabel ("percentage")
plt.legend(loc="upper left™)
plt.title("demo")

plt.show()
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7.2 Multivariate Analysis

In this section, I will only demostrate the bivariate analysis. Since the multivariate analysis is the generation
of the bivariate.

7.2.1 Numerical V.S. Numerical

¢ Correlation matrix

from pyspark.mllib.stat import Statistics
import pandas as pd

corr_data df.select (num_cols)

col_names = corr_data.columns

features = corr_data.rdd.map (lambda row: row[0:])
corr_mat=Statistics.corr (features, method="pearson")
corr_df = pd.DataFrame (corr_mat)

corr_df.index, corr_df.columns = col_names, col_names

print (corr_df.to_string())

o o +
\ Account Balance| No of dependents|
o o +
\ 1.01-0.01414542650320914 |
|-0.01414542650320914 | 1.0
F—————————— t—————————— +

e Scatter Plot

import seaborn as sns
sns.set (style="ticks")

df = sns.load_dataset ("iris")
sns.pairplot (df, hue="species")
plt.show ()

7.2.2 Categorical V.S. Categorical

* Pearson’s Chi-squared test

Warning: pyspark.ml.stat is only available in Spark 2.4.0.

from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import ChiSquareTest

data = [(0.0, Vectors.dense (0.5, 10.0)),
(0.0, Vectors.dense (1.5, 20.0)),
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(1.0, Vectors.dense(l.5, 30.0)),
(0.0, Vectors.dense (3.5, 30.0)),
(0.0, Vectors.dense (3.5, 40.0)),
(1.0, Vectors.dense (3.5, 40.0))]
df = spark.createDataFrame (data, ["label", "features"])

r = ChiSquareTest.test (df, "features", "label") .head()

print ("pValues: " + str(r.pValues))
print ("degreesOfFreedom: " + str(r.degreesOfFreedom))
print ("statistics: " + str(r.statistics))

pValues: [0.687289278791,0.682270330336]
degreesOfFreedom: [2, 3]
statistics: [0.75,1.5]

¢ Cross table

df .stat.crosstab("age_class", "Occupation") .show()
B t———t———t———t———
|age_class_Occupation| 1] 2 3] 4
o +———t———t———t———

\ <25] 4] 341108 4|
\ 55-64 | 1] 15] 31| 9|
\ 25-34] 71 6112691 60]
\ 35-44 | 4] 5811431 49|
\ 65+ 5| 3| 6] 9]
\ 45-54| 1| 29| 73] 17|
o fo——p o ——+

» Stacked plot

labels = ['missing’, ’'<25’, ’'25-34', ’'35-44', "45-547,'55-64"7,765+"]

missing = np.array([0.000095, 0.024830, 0.028665, 0.029477, 0.031918,0.037073,0.0266997)
man = np.array([0.000147, 0.036311, 0.038684, 0.044761, 0.051269, 0.059542, 0.054259])
women = np.array([0.004035, 0.032935, 0.035351, 0.041778, 0.048437, 0.056236,0.0480911)
ind = [x for x, _ in enumerate (labels)]

plt.figure(figsize=(10,8))

plt.bar (ind, women, width=0.8, label='women’, color=’'gold’, bottom=man+missing)
plt.bar (ind, man, width=0.8, label='man’, color='silver’, bottom=missing)
plt.bar(ind, missing, width=0.8, label="missing’, color=’4#CD853F")

plt.xticks (ind, labels)
plt.ylabel ("percentage")
plt.legend(loc="upper left")
plt.title("demo")

plt.show()

7.2.3 Numerical V.S. Categorical
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CHAPTER
EIGHT

REGRESSION

Note: A journey of a thousand miles begins with a single step — old Chinese proverb

In statistical modeling, regression analysis focuses on investigating the relationship between a dependent
variable and one or more independent variables. Wikipedia Regression analysis

In data mining, Regression is a model to represent the relationship between the value of lable ( or target,
it is numerical variable) and on one or more features (or predictors they can be numerical and categorical
variables).

8.1 Linear Regression

8.1.1 Introduction

Given that adata set { x;1, . . ., Tin, ¥i }1~; which contains n features (variables) and m samples (data points),
in simple linear regression model for modeling m data points with one independent variable: x;1, the formula
is given by:

yi = Bo + P1xi1, where,i = 1,---m.

In matrix notation, the data set is written as X = [Xy,---,X,,] with X; = {z;};-;, ¥y = {vi}i2; and
B" = {B;}™™,. Then the normal equations are written as

y = X0.

8.1.2 How to solve it?

1. Direct Methods (For more information please refer to my Prelim Notes for Numerical Analysis)
* For squared or rectangular matrices

— Singular Value Decomposition
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— Gram-Schmidt orthogonalization
— QR Decomposition

* For squared matrices
— LU Decomposition
— Cholesky Decomposition
— Regular Splittings

2. Iterative Methods
* Stationary cases iterative method

Jacobi Method

Gauss-Seidel Method

Richardson Method

Successive Over Relaxation (SOR) Method

* Dynamic cases iterative method

Chebyshev iterative Method

Minimal residuals Method

Minimal correction iterative method

Steepest Descent Method

Conjugate Gradients Method

8.1.3 Demo
* The Jupyter notebook can be download from Linear Regression which was implemented without using
Pipeline.

* The Jupyter notebook can be download from Linear Regression with Pipeline which was implemented
with using Pipeline.

* 1 will only present the code with pipeline style in the following.
* For more details about the parameters, please visit Linear Regression API .
1. Set up spark context and SparkSession

from pyspark.sql import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark regression example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

2. Load dataset
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df = spark.read.format (' com.databricks.spark.csv’) .\
options (header='"true’, \
inferschema='true’) .\
load("../data/Advertising.csv", header=True);

check the data set

df .show (5, True)
df .printSchema ()

Then you will get

+————- +————- fo————— +————- +
\ TV|Radio|Newspaper|Sales|
+————= +————= o +————= +
[230.1] 37.8] 69.2] 22.1]
| 44.5] 39.3] 45.11 10.4]
| 17.2] 45.9] 69.3] 9.3]
[151.5] 41.3] 58.5] 18.5]
[180.8] 10.8] 58.4] 12.9]
+————= +————= o +————= +

only showing top 5 rows

|-— TV: double (nullable = true)

| -—— Radio: double (nullable = true)

| -—— Newspaper: double (nullable = true)
| -—— Sales: double (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df .describe () .show ()

Then you will get

o= o o o o +
| summary | TV | Radio]| Newspaper | Sales|
o fo——————— o o o +
| count| 200 | 200 | 200 | 200 |
\ mean | 147.0425123.264000000000024130.553999999999995|14.022500000000003 |
| stddev|85.85423631490805(14.846809176168728| 21.77862083852283| 5.217456565710477 |
\ min | 0.7] 0.0] 0.3 1.6}
\ max | 296.4 | 49.6| 114.0| 27.0]
o o o o o +

3. Convert the data to dense vector (features and label)

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

# I provide two ways to build the features and labels
# method 1 (good for small feature):

#def transData (row) :
# return Row (label=row["Sales"],
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Figure 8.1: Sales distribution
# features=Vectors.dense ([row["TV"],
# row["Radio"],
# row/["Newspaper"]]))

# Method 2 (good for large features):
def transData (data) :
return data.rdd.map (lambda r: [Vectors.dense(r[:-1]1),r[-1]]).toDF ([’ features’,’ label’])

4. Transform the dataset to DataFrame

transformed= transData (df)
transformed. show (5)

o +————= +
\ features|label|
o +———— +
[[230.1,37.8,69.2]1| 22.1|
| [44.5,39.3,45.1]1| 10.4|
| [17.2,45.9,69.3]1| 9.3]|
| [151.5,41.3,58.5]| 18.5]
[[180.8,10.8,58.4]1| 12.9]
o —————— +———— +

only showing top 5 rows

Note: You will find out that all of the machine learning algorithms in Spark are based on the features and
label. That is to say, you can play with all of the machine learning algorithms in Spark when you get ready

the features and label.
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5. Deal With Categorical Variables

from pyspark.ml import Pipeline

from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer

from pyspark.ml.evaluation import RegressionEvaluator

# Automatically identify categorical features, and index them.
# We specify maxCategories so features with > 4 distinct values are treated as continuous.

featureIndexer = VectorIndexer (inputCol="features", \
outputCol="indexedFeatures", \
maxCategories=4) .fit (transformed)

data = featurelndexer.transform(transformed)

Now you check your dataset with

data.show (5, True)

you will get

e - o +
features|label| indexedFeatures|

22.11[230.1,37.8,69.2]|
10.4| [44.5,39.3,45.11/|
9.3 [17.2,45.9,69.3]]
8.5|[151.5,41.3,58.51|
2.91[180.8,10.8,58.4] |

only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

# Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit ([0.6, 0.47)

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype pahse):

trainingData.show (5)
testData.show (5)

Then you will get

o —— t——— o —— +
features|label|indexedFeatures|

o —— - o —— +

| [4.1,11.6,5.
| [5.4,29.9,9.
\
\
\

7] .2] [4.1,11.6,5.

4]
[7.3,28.1,41.4]

6]

0]

3 771

5.3] [5.4,29.9,9.4]]|
5.50[7.3,28.1,41.41]|
[7.8,38.9,50. 6 611
(8.6,2.1,1. 4 07|

.61[7.8,38.9,50.
.81 [8.6,2.1,1.
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only showing top 5 rows

e ————————— - e ————————— +

| features|label| indexedFeatures|

e F————— o +
[0.7,39.6,8. 1.6 [0.7,39.6,8.
[8.4,27.2,2. 5.7 [8.4,27.2,2.

[13.2,15.9,49.
[16.9,43.7,89.

5.6([13.2,15.9,49.

\ 7]
\ 1]
|[11.7,36.9,45.2]
\ 6]
\ 41 8.71016.9,43.7,89.

71
17
7.31[11.7,36.9,45.21|
6]l
4] |

only showing top 5 rows

7. Fit Ordinary Least Square Regression Model
For more details about the parameters, please visit Linear Regression API .

# Import LinearRegression class
from pyspark.ml.regression import LinearRegression

# Define LinearRegression algorithm
lr = LinearRegression()

8. Pipeline Architecture

# Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featurelndexer, 1lr])

model = pipeline.fit (trainingData)

9. Summary of the Model

Spark has a poor summary function for data and model. I wrote a summary function which has similar
format as R output for the linear regression in PySpark.

def modelsummary (model) :
import numpy as np
print ("Note: the last rows are the information for Intercept")
print ("##","——-"----" ")
print ("##"," Estimate | Std.Error | t Values | P-value")
coef = np.append(list (model.coefficients),model.intercept)
Summary=model.summary

for i in range(len(Summary.pValues)):
print ("##",’{:10.6f}’ .format (coef[i]),\
7{:10.6f}’ .format (Summary.coefficientStandardErrors[i]), \
7{:8.3f}’ .format (Summary.tValues[i]), \
7{:10.6f}’ .format (Summary.pValues[i]))

print ("##",’ —=")

print ("##", "Mean squared error: § .6f" \
% Summary.meanSquaredError, ", RMSE: % .6f" \
% Summary.rootMeanSquaredError )
print ("#4#","Multiple R-squared: ¢f" % Summary.r2, ", \
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o

Total iterations: ¢i"% Summary.totallterations)
modelsummary (model.stages[—-1])

You will get the following summary results:

Note: the last rows are the information for Intercept

’##’, ’777’)
"##’, ’'Mean squared error: 2.588230’, ', RMSE: 1.608798")

("##", '"-—— ")

("##’, ' ©Estimate | Std.Error | t Values | P-value’)

(" ##", ' 0.044186", ' 0.001663", 7’ 26.573", ' 0.000000")
(" ##", ' 0.206311", ' 0.010846", ' 19.0227, ' 0.000000")
(" ##, 0.001963", ' 0.007467", ' 0.263", ' 0.793113")
(" ##, ' 2.596154", ' 0.379550", 7’ 6.840", ' 0.000000")
(

(

(

"#4#’, 'Multiple R-squared: 0.911869", ', Total iterations:

10. Make predictions

# Make predictions.
predictions = model.transform(testData)

# Select example rows to display.

predictions.select ("features","label", "predictedLabel") .show (5)
o —— +———— o +

features|label| prediction]|
e - T +

[0.7,39.6,8.
[(8.4,27.2,2.

7] 1.6] 10.81405928637388|

1]
[11.7,36.9,45.2]

6]

4]

5.7 8.583086404079918 |
7.3110.814712818232422 |
5.6 6.557106943899219|
8.7112.534151375058645|

[13.2,15.9,49.
[16.9,43.7,89.

only showing top 5 rows

9. Evaluation

from pyspark.ml.evaluation import RegressionEvaluator

# Select (prediction, true label) and compute test error

evaluator = RegressionEvaluator (labelCol="label",
predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate (predictions)
print ("Root Mean Squared Error (RMSE) on test data = 2g" % rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.63114

You can also check the R? value for the test data:

1)
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y_true = predictions.select ("label") .toPandas ()
y_pred = predictions.select ("prediction") .toPandas ()

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print (' r2_score: {0}’ .format (r2_score))

Then you will get

r2_score: 0.854486655585

Warning:  You should know most softwares are using different formula to calculate the R? value
when no intercept is included in the model. You can get more information from the disscussion at
StackExchange.

8.2 Generalized linear regression

8.2.1 Introduction
8.2.2 How to solve it?

8.2.3 Demo

* The Jupyter notebook can be download from Generalized Linear Regression.
* For more details about the parameters, please visit Generalized Linear Regression API .
1. Set up spark context and SparkSession

from pyspark.sqgl import SparkSession

spark = SparkSession \
.builder \
.appName ("Python Spark regression example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

2. Load dataset

df = spark.read.format (' com.databricks.spark.csv’) .\
options (header="true’, \
inferschema='true’) .\
load ("../data/Advertising.csv",header=True) ;

check the data set

df .show (5, True)
df .printSchema ()

Then you will get

60 Chapter 8. Regression



https://stats.stackexchange.com/questions/26176/removal-of-statistically-significant-intercept-term-increases-r2-in-linear-mo
https://stats.stackexchange.com/questions/26176/removal-of-statistically-significant-intercept-term-increases-r2-in-linear-mo
http://takwatanabe.me/pyspark/generated/generated/ml.regression.GeneralizedLinearRegression.html

Learning Apache Spark with Python, Release v1.0

+————- +———— Fo————— +————- +
\ TV|Radio|Newspaper|Sales|
+————= +————= o +————= +
[230.1] 37.8] 69.2] 22.1]

44.5| 39.3| 45.1| 10.4]
| 17.2] 45.9] 69.31 9.3
[151.5] 41.3] 58.5] 18.5]
[180.8] 10.8] 58.4] 12.9]
+————= F————= Fo————— +————= +

only showing top 5 rows

|—— TV: double (nullable = true)

| -— Radio: double (nullable = true)

| -—— Newspaper: double (nullable = true)
| -— Sales: double (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df.describe () .show ()

Then you will get

o o o o o +
| summary | TV | Radio]| Newspaper | Sales |
- o o o —————— o +
| count| 200 | 200 200 | 200 |
\ mean | 147.0425123.264000000000024130.553999999999995(114.022500000000003 |
| stddev|85.85423631490805|14.846809176168728| 21.77862083852283| 5.217456565710477|
\ min| 0.7] 0.0] 0.3] 1.6]
\ max | 296.4 | 49.6| 114.0| 27.0]|
- o f——————— o ———— o +

3. Convert the data to dense vector (features and label)

from pyspark.sqgl import Row
from pyspark.ml.linalg import Vectors

# I provide two ways to build the features and labels

# method 1 (good for small feature):

#def transData (row) :

# return Row (label=row/["Sales"],

features=Vectors.dense ([row["TV"],
row/["Radio"],
row["Newspaper"]]))

R S

# Method 2 (good for large features) :
def transData (data) :
return data.rdd.map(lambda r: [Vectors.dense(r[:-1]),r[-1]]).toDF ([’ features’,’label’])

transformed= transData (df)
transformed. show (5)
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o f——— +
\ features|label|
o +———— +
| [230.1,37.8,69.2]1| 22.1|
| [44.5,39.3,45.1]1| 10.4|
| [17.2,45.9,69.3]] 9.3
| [151.5,41.3,58.5]] 18.5|
|[180.8,10.8,58.4]1| 12.9]
o +————= +

only showing top 5 rows

Note: You will find out that all of the machine learning algorithms in Spark are based on the features and
label. That is to say, you can play with all of the machine learning algorithms in Spark when you get ready

the features and label.

4. Convert the data to dense vector

# convert the data to dense vector
def transData (data) :

return data.rdd.map(lambda r: [r[-1], Vectors.dense(r[:-11)1]) .\

toDF ([’ label’,’ features’])

from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

data= transData (df)
data.show ()

5. Deal with the Categorical variables

from pyspark.ml import Pipeline

from pyspark.ml.regression import LinearRegression

from pyspark.ml.feature import VectorIndexer

from pyspark.ml.evaluation import RegressionEvaluator

# Automatically identify categorical features,
# We specify maxCategories so features with > 4

# distinct values are treated as continuous.

featurelIndexer = VectorIndexer (inputCol="features",

and index them.

outputCol="indexedFeatures", \
maxCategories=4) .fit (transformed)

data = featurelndexer.transform(transformed)

When you check you data at this point, you will get

o ——— +———— o ————— +
| features|label| indexedFeatures|
o —————— +———— o —————— +
| [230.1,37.8,69.2]1] 22.11[230.1,37.8,69.2]|
| [44.5,39.3,45.1]1] 10.4| [44.5,39.3,45.11/|
| [17.2,45.9,69.3]] 9.3 [17.2,45.9,69.3]|

62

Chapter 8.

Regression



Learning Apache Spark with Python, Release v1.0

[151.5,41.3,58.5]
[180.8,10.8,58.4]

8.5|[151.5,41.3,58.5]
2.91[180.8,10.8,58.4]

e

only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

# Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit ([0.6, 0.47)

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype pahse):

trainingData.show (5)
testData.show (5)

Then you will get

——————— +———— f—————— +
\ features|label| indexedFeatures|
o +——— o +
\ [5.4,29.9,9.4]| 5.3] [5.4,29.9,9.4]

| [7.8,38.9,50.6]| 6.6] [7.8,38.9,50.6]]
\ [8.4,27.2,2.1]1] 5.7 [8.4,27.2,2.11]
| [8.7,48.9,75.01| 7.2] [8.7,48.9,75.0]]|
[[11.7,36.9,45.21| 7.3][11.7,36.9,45.2]|
o +———— o +

only showing top 5 rows

o ————— F——— o ————— +
\ features|label|indexedFeatures|
o +———— o +
| 10.7,39.6,8.7]1| 1.6] [0.7,39.6,8.7]1]
| [4.1,11.6,5.7]| 3.2| [4.1,11.6,5.7]1]
[[7.3,28.1,41.41| 5.5][7.3,28.1,41.471|
\ [8.6,2.1,1.0]| 4.8] [8.6,2.1,1.0]]
|[17.2,4.1,31.6]1| 5.9|[17.2,4.1,31.61]
o +———— o +

only showing top 5 rows

7. Fit Generalized Linear Regression Model

# Import LinearRegression class
from pyspark.ml.regression import GeneralizedLinearRegression

# Define LinearRegression algorithm
glr = GeneralizedLinearRegression (family="gaussian", link="identity",\
maxIter=10, regParam=0.3)

8. Pipeline Architecture

# Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featurelndexer, glr])
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model = pipeline.fit (trainingData)

9. Summary of the Model

Spark has a poor summary function for data and model. I wrote a summary function which has similar

format as R output for the linear regression in PySpark.

def modelsummary (model) :
import numpy as np

print ("Note: the last rows are the information for Intercept")

print ("##","-—"-"--"-"- ")
| t Values | P-value")
coef = np.append(list (model.coefficients),model.intercept)

print ("##"," Estimate \ Std.Error
Summary=model.summary

for i in range(len(Summary.pValues)):

print ("##",’{:10.6f}’ .format (coef[i]),\
"{:10.6f}’ .format (Summary.coefficientStandardErrors[i]), \
7{:8.3f}’ .format (Summary.tValues[i]), \
7{:10.6f}" .format (Summary.pValues[i]))

print (u##n, )

% Summary.meanSquaredError, ,
o

print ("##", "Multiple R-squared: $f"

BT S S S

modelsummary (model.stages[-1])

You will get the following summary results:

o)
°

print ("##", "Mean squared error: % .6f" \

RMSE: %

¢ Summary.rootMeanSquaredError )

6"\

Summary.r2, ", \

Total iterations: %i"% Summary.totallterations)

Note: the last rows are the information for Intercept

("##", '-—————————— ")
("##’, ' Estimate \ Std.Error | t Values |  P-value’)
(" ##’, " 0.042857", ' 0.001668", 7 25.692’, ' 0.000000")
("##", 7 0.199922’, * 0.009881", * 20.232", ' 0.000000")
("##’, * -0.001957", * 0.006917’, * -0.283", ' 0.777757")
("##", * 3.007515", 7 0.406389", ' 7.401", 7 0.000000")
( 14 ## 7 , r __ _ 7/ )
10. Make predictions
# Make predictions.
predictions = model.transform(testData)
# Select example rows to display.
predictions.select ("features","label", "predictedLabel") .show (5)
Fom +————= o +
\ features|label| prediction]|
o —— +————= o +
| [0.7,39.6,8.7]1] 1.6110.937383732327625|
| [4.1,11.6,5.7]] 3.2| 5.491166258750164 |
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1[7.3,28.1,41.4]
| [8.6,2.1,1.0]
| [17.2,4.1,31.6]

5.5 8.8571603947873 |
4.8] 3.793966281660073|
5.9] 4.502507124763654 |

only showing top 5 rows

11. Evaluation

from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.ml.evaluation import RegressionEvaluator

# Select (prediction, true label) and compute test error

evaluator = RegressionEvaluator (labelCol="label",
predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate (predictions)
print ("Root Mean Squared Error (RMSE) on test data = %g" $ rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.89857

y_true = predictions.select ("label") .toPandas()
y_pred predictions.select ("prediction") .toPandas ()

import sklearn.metrics
r2_score = sklearn.metrics.r2_score(y_true, y_pred)
print (' r2_score: {0}’ .format (r2_score))

Then you will get the R? value:

r2_score: 0.87707391843

8.3 Decision tree Regression

8.3.1 Introduction
8.3.2 How to solve it?

8.3.3 Demo

* The Jupyter notebook can be download from Decision Tree Regression.

* For more details about the parameters, please visit Decision Tree Regressor API .

1. Set up spark context and SparkSession

from pyspark.sgl import SparkSession

spark = SparkSession \
.builder \
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.appName ("Python Spark regression example™) \
.config("spark.some.config.option", "some-value") \
.getOrCreate ()

2. Load dataset

df = spark.read.format (' com.databricks.spark.csv’) .\
options (header='"true’, \
inferschema="true’) .\
load("../data/Advertising.csv",header=True) ;

check the data set

df .show (5, True)
df .printSchema ()

Then you will get

+———— +———— fo— +————= +
\ TV |Radio|Newspaper| Sales|
+————- +———— Fom————— +————- +
[230.1] 37.8] 69.2] 22.1]
| 44.5] 39.3] 45.1| 10.4]
| 17.2] 45.9] 69.3] 9.3]
[151.5] 41.3] 58.5| 18.5]
[180.8] 10.8] 58.4| 12.9]
+———— +———— Fo————— +———— +

only showing top 5 rows

|-— TV: double (nullable = true)

| -— Radio: double (nullable = true)

| —— Newspaper: double (nullable = true)
| -— Sales: double (nullable = true)

You can also get the Statistical resutls from the data frame (Unfortunately, it only works for numerical).

df .describe () .show ()

Then you will get

Fo———— o o o o +
| summary | V| Radio| Newspaper | Sales|
o o o o o +
| count| 200 200 | 200 | 200
\ mean | 147.0425123.264000000000024130.553999999999995(14.022500000000003|
| stddev]85.85423631490805]14.846809176168728| 21.77862083852283| 5.217456565710477 |
| min | 0.7 0.0] 0.3] 1.6]
\ max | 296.4 | 49.6| 114.0] 27.0|
o o o o o +

3. Convert the data to dense vector (features and label)
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from pyspark.sql import Row
from pyspark.ml.linalg import Vectors

# I provide two ways to build the features and labels

# method 1 (good for small feature):

#def transData (row) :

# return Row (label=row["Sales"],

features=Vectors.dense ([row["TV"],
row/["Radio"],
row/["Newspaper"]]))

S Hh

# Method 2 (good for large features):
def transData (data) :
return data.rdd.map (lambda r: [Vectors.dense(r[:-1]1),r[-1]]).toDF ([’ features’,’ label’])

transformed= transData (df)
transformed. show (5)

o —————— +———— +
\ features|label|
o - +
| [230.1,37.8,69.2]1| 22.1|
| [44.5,39.3,45.1]1| 10.4|
| [17.2,45.9,69.3]] 9.3
[ [151.5,41.3,58.5]| 18.5]
[[180.8,10.8,58.41| 12.9]
o +———— +

only showing top 5 rows

Note: You will find out that all of the machine learning algorithms in Spark are based on the features and
label. That is to say, you can play with all of the machine learning algorithms in Spark when you get ready

the features and label.

4. Convert the data to dense vector

# convert the data to dense vector
def transData(data):
return data.rdd.map(lambda r: [r[-1], Vectors.dense(r[:-1]1)1]) .\
toDF ([’ label’,’ features’])

transformed = transData (df)
transformed.show (5)

5. Deal with the Categorical variables

from pyspark.ml import Pipeline

from pyspark.ml.regression import LinearRegression
from pyspark.ml.feature import VectorIndexer

from pyspark.ml.evaluation import RegressionEvaluator

# Automatically identify categorical features, and index them.
# We specify maxCategories so features with > 4
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# distinct values are treated as continuous.

featureIndexer = VectorIndexer (inputCol="features", \
outputCol="indexedFeatures", \
maxCategories=4) .fit (transformed)

data = featurelndexer.transform(transformed)

When you check you data at this point, you will get

e ————————— t——— e ————————— +
\ features|label| indexedFeatures|

22.11[230.1,37.8,69.2]|
10.4| [44.5,39.3,45.171/|
9.3 [17.2,45.9,69.3]1|
8.5|[151.5,41.3,58.51|
2.91[180.8,10.8,58.4]|

only showing top 5 rows

6. Split the data into training and test sets (40% held out for testing)

# Split the data into training and test sets (40% held out for testing)
(trainingData, testData) = transformed.randomSplit ([0.6, 0.47)

You can check your train and test data as follows (In my opinion, it is always to good to keep tracking your
data during prototype pahse):

trainingData.show (5)
testData.show (5)

Then you will get
e - e +
features|label|indexedFeatures|
t———— +————— t—————— +
[4.1,11.6,5. 3.2 [4.1,11.6,5.

5.51[7.3,28.1,41.

7]

[7.3,28.1,41. 41|
5.7 [8.4,27.2,2.1]]
011

0711

\ 7]
\ 4]
| [8.4,27.2,2.1]
\ 0] 4.8] [8.6,2.1,1.
\ 0] 7.2108.7,48.9,75.

[8.6,2.1,1.
[8.7,48.9,75.

only showing top 5 rows

e —— - o —— +
\ features|label| indexedFeatures|

.6 [0.7,39.6,8.
.3 [5.4,29.9,9.

[0.7,39.6,8. 1 711
5 47 |
6.6/ [7.8,38.9,50.61]]
9 371
6 47|

\ 7]
| [5.4,29.9,9.4]
| [7.8,38.9,50.6]
| [17.2,45.9,69.3]
| [18.7,12.1,23.4]

.31[17.2,45.9,69.
.71[18.7,12.1,23.
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only showing top 5 rows

7. Fit Decision Tree Regression Model

from pyspark.ml.regression import DecisionTreeRegressor

# Train a DecisionTree model.
dt = DecisionTreeRegressor (featuresCol="indexedFeatures")

8. Pipeline Architecture

# Chain indexer and tree in a Pipeline
pipeline = Pipeline(stages=[featurelndexer, dt])

model = pipeline.fit (trainingData)

9. Make predictions

# Make predictions.
predictions = model.transform(testData)

# Select example rows to display.

predictions.select ("features", "label", "predictedLabel") .show (5)
o +————= o +
|prediction| label | features|
Fo—— o= Fom e +
\ 7.2] 1l.6] [0.7,39.6,8.7]1|
\ 7.3] 5.3] [5.4,29.9,9.4]|
\ 7.2 6.6| [7.8,38.9,50.61]|
\ 8.64] 9.31[17.2,45.9,69.31|
\ 6.45] 6.7|[18.7,12.1,23.47|

Fo——— o= Fom +
only showing top 5 rows

10. Evaluation

from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.ml.evaluation import RegressionEvaluator

# Select (prediction, true label) and compute test error

evaluator = RegressionEvaluator (labelCol="1label",
predictionCol="prediction",
metricName="rmse")

rmse = evaluator.evaluate (predictions)
print ("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

The final Root Mean Squared Error (RMSE) is as follows:

Root Mean Squared Error (RMSE) on test data = 1.50999

y_true = predictions.select ("label") .toPandas ()
y_pred = predictions.select ("prediction") .toPandas ()

8.3. Decision tree Regression
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import sklearn.metrics

r2_score = sklearn.metrics.r2_score(y_true,
print (' r2_score: {0}’ .format (r2_score))

Then you will get the R? value:

r2_score: 0.911024318967

You may also check the importance of the features:

model.stages[1l].featureImportances

The you will get the weight for each features

SparseVector (3, {0: 0.6811, 1: 0.3187,

8.4 Random Forest Regression

8.4.1 Introduction
8.4.2 How to solve it?

8.4.3 Demo

* The Jupyter notebook can be download from Random Forest Regression.

2

0.0002})

y_pred)

* For more details about the parameters, please visit Random Forest Regressor API .

8.5 Gradient-boosted tree regression

8.5.1 Introduction
8.5.2 How to solve it?

8.5.3 Demo

* The Jupyter notebook can be download from Gradient-boosted tree regression.

* For more details about the parameters, please visit Gradient boosted tree API .
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http://takwatanabe.me/pyspark/generated/generated/ml.regression.RandomForestRegressor.html
http://takwatanabe.me/pyspark/generated/generated/ml.regression.GBTRegressor.html

CHAPTER
NINE

REGULARIZATION

In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse
problems, regularization is a process of introducing additional information in order to solve an ill-posed
problem or to prevent overfitting (Wikipedia Regularization).

Due to the sparsity within our data, our training sets will often be ill-posed (singular). Applying regulariza-
tion to the regression has many advantages, including:

1. Converting ill-posed problems to well-posed by adding additional information via the penalty param-
eter A

2. Preventing overfitting

3. Variable selection and the removal of correlated variables (Glmnet Vignette). The Ridge method
shrinks the coefficients of correlated variables while the LASSO method picks one variable and dis-
cards the others. The elastic net penalty is a mixture of these two; if variables are correlated in groups
then o = 0.5 tends to select the groups as in or out. If « is close to 1, the elastic net performs
much like the LASSO method and removes any degeneracies and wild behavior caused by extreme
correlations.

9.1 Ridge regression

1 . .
in —|| X8 —Y|*+ |8]3
min —[|.X5 = Y7 + AllBl2

9.2 Least Absolute Shrinkage and Selection Operator (LASSO)

1 . .
in —[| X8 —Y|*+ A
min —[|X5 = Y|" + Al

9.3 Elastic net

B o2 2
mmin X =YY"+ AllBll + (1 = a)lBll2), « € [0,1]
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CHAPTER
TEN

CLASSIFICATION

Note: Birds of a feather folock together. — old Chinese proverb

10.1 Logistic regression

10.1.1 Introduction

10.1.2 Demo

* The Jupyter notebook can be download from Logistic Regression.

* For more details, please visit Logistic Regression API .

Note: In this demo, I introduced a new function get_dummy to deal with the categorical data. I highly
recommend you to use my get_ dummy function in the other cases. This function will save a lot of time for

you.

1. Set up spark context and SparkSession

from pyspark