CSC 369: Distributed Computing

Alex Dekhtyar

Day 1: Welcome
Syllabus

● Teaching and Communication
● Textbook(s)
● Grading
● Exams
● Labs
● Late Policies

Course

● What is “distributed computing”
● Why study it?
● Examples of problems
Syllabus: Teaching and Communication

Lectures are synchronous but recorded
Syllabus: Teaching and Communication

Lectures are synchronous but recorded

Lab periods may be used for guided activities
But often are just for work on lab assignments

Office hour between lecture and lab (M,F)
Syllabus: Teaching and Communication

Mailing list Slack

Zoom

Static Website Canvas
Waitlist

Drop/Add deadline: **April 15**

All waitlisted students get full access to class for two weeks

First five (5) days - all adds handled automatically

Everyone else - I will look at the state of affairs next Monday.
Syllabus: Textbooks

NONE

Lecture Notes

Documentation

Original MapReduce and Spark papers
Syllabus: Books

Syllabus: Grading

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>50-60%</td>
</tr>
<tr>
<td>Exams/Written Assessments</td>
<td>35-50%</td>
</tr>
<tr>
<td>Homework/Study guides</td>
<td>0-5%</td>
</tr>
</tbody>
</table>
Syllabus: Labs

~ 8 Labs (roughly weekly)

- 1 Intro (Lab 1 starts today)
- 2-3 MongoDB
- 2-3 Hadoop
- 2-3 Spark
Syllabus: Labs

~ 8 Labs (roughly weekly)

- 1 Intro (Lab 1 starts today)
- 2-3 MongoDB
- 2-3 Hadoop
- 2-3 Spark

Mostly individual

Some pair programming
experiments mid-quarter
Syllabus: Exams
Syllabus: Exams
Syllabus: Exams

Combination of programming and short timed tests.

- **MongoDB** programming test + quiz
- **Hadoop** programming test + quiz
- **Spark** programming test + quiz (Final exam time)
Syllabus: Exams

Combination of programming and short timed tests.

- **MongoDB** programming test + quiz
- **Hadoop** programming test + quiz
- **Spark** programming test + quiz *(Final exam time)*

Open “most things” on programming tests
Still thinking how to make quizzes work
Syllabus: Late Policies

Step 1. Talk to Me!!!!!!
Syllabus: Late Policies

Step 1. Talk to Me!!!!!

- Deadlines are already lenient
- There is a grace period
- Deadlines are to prevent you from being bogged down with one problem
- Partial credit
Syllabus

● Teaching and Communication
● Textbook(s)
● Grading
● Exams
● Labs
● Late Policies

Course

● What is “distributed computing”
● Why study it?
● Examples of problems
One small thing: I forgot to ask a couple of questions

https://forms.gle/2vuNJr1nR6FWpioG8
Distributed Computing
Distributed Computing

Multiple independent computers work on the same problem at the same time
Distributed Computing

Multiple independent computers work on the same problem at the same time
Distributed Computing

Multiple independent computers work on the same problem at the same time
Distributed Computing

Multiple independent computers work on the same problem at the same time.
Distributed Computing

Multiple independent computers work on the same problem at the same time
Distributed Computing

Multiple independent computers work on the same problem at the same time

Facilitated by distributed computing systems and frameworks
Distributed Computing

Multiple independent computers work on the same problem at the same time

CSC 369: writing **software for solving problems** using existing distributed computing frameworks

CSC 469: studying how to build distributed computing frameworks
Distributed Computing

CSC 369: writing software for solving problems using existing distributed computing frameworks
Elephant in the room
BIG DATA

Elephant in the room
Big Data Problems

Big Data = any data collection that is larger than the storage capacity of a single computer system used to process it.
Big Data = any data collection that is larger than the storage capacity of a single computer system used to process it.

Problems that are easy to solve as small data problems turn out to be difficult as big data problems
This is why we *cannot* have nice things

teach CSC 369

Problems that are easy to solve as small data problems turn out to be **difficult** as **big data problems**
When you have a hammer everything is a nail

I am a “database guy”, so for me “distributed computing problems” = “data management and analysis problems”

Distributed Relational DBMS are not different than regular Relational DBMS and thus are covered in CSC 365

So, we’ll study other distributed frameworks
MongoDB: distributed non-relational document store

Replicates and Shards data

Works with JSON objects
MongoDB: distributed non-relational document store
- Replicates and shards data
- Works with JSON objects

Hadoop: open-source implementation of MapReduce framework
- **MapReduce**: distributed computing framework for data processing
 - **Map**: transform data
 - **Reduce**: combine information
MongoDB: distributed non-relational document store
Replicates and Shards data
Works with JSON objects

Hadoop: open-source implementation of MapReduce framework
MapReduce: distributed computing framework for data processing
Map: transform data
Reduce: combine information

Spark: lazy evaluation data processing over Hadoop
Resilient Distributed Datasets (RDDs): optimize data processing
Implemented in Scala

PySpark: Python interface to Spark
What Types of Problems?

- Handout #2
- The “Facebook” Example
- The “Google” Example
- The “Twitter” Example
- The “Census” Example
- The “Bioinformatics” Example

I’ll record a 10-15 companion video.
In Lab Today

1. Confirm that everyone has access to ambari-head and MongoDB, change passwords

2. Lab 1: JSON processing