
CSC 369: Distributed Computing

Alex Dekhtyar

Day 8: Problem-solving with db.collection.aggregate()

April 22

April 22: Vladimir Lenin’s Birthday

Housekeeping

Lab 3: now with a deadline (Friday midnight + grace period)

Lab 4: Friday -- Monday, May 4 (gives you time)
Lab 5: Hadoop

Friday: quiz. Be ON TIME
Monday: 12:10pm - Lab Test. Read email/slack for details

Grading: Lab 2 -> Quiz -> Lab 2 -> Lab Test -> Lab 1

Back into the fray

Very Tersely

Filtering

Projection
Transformation

Join

Grouping

Sort

Given a condition - keep only objects that satisfy it

Modify the contents of its object based solely on
what’s in the object itself

Aggregation

Break collection into groups, each representing
objects with same values of some keys

Combine objects from two different collections
based on matches in values of some keys

Compute an aggregate value over a set of objects

Return objects in a specific order

… and a few more

Ungrouping
Unwinding

Limit

Skip

Opposite of grouping - build an object for each
element of an array

Return a specific number of documents

Sample

Return documents after skipping a specified
number

Return a random sample of documents

Facets Run multiple operations concurrently, combine
results in a single document

$operation

Filtering

Projection

Join

Grouping

Sort

Aggregation

$match

$project

$group

$lookup

$sort

Unwinding

Limit

Skip

Sample

$unwind

$limit

$skip

$sample

$operation

Filtering

Projection

Join

Grouping

Sort

Aggregation

$match

$project $set $unset $addFields

$redact

$replaceRoot

$group
$bucket

$bucketAuto

$lookup $graphLookup

$sortByCount$sort

This is a lot to take in

How do we actually solve problems with

db.collection.aggregate()

???

Key things to remember

Filtering
Selection

Projection
Transformation

JoinGrouping
Aggregation

Unwind

Other operations - as needed to assist the main flow

Faceting

Key things to remember

Selections/Filters are EASY to recognize

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

Key things to remember

Selections/Filters are EASY to recognize

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

What are the tell-tales?

Key things to remember

Selections/Filters are EASY to recognize

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

What are the tell-tales?

constants

Key things to remember

Selections/Filters are EASY to recognize

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

What are the tell-tales?

constants

Key things to remember

Selections/Filters are EASY to recognize

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

What are the tell-tales?

constants

comparisons

Key things to remember

Projections are everywhere

Use Case #1: Show only the things we are interested in

Use Case #2: Transform the output

Shows up in support of other operations
(selection, join, grouping)

Central activity in an information request

Key things to remember

Projections are everywhere

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

Use Case #1: Support

Key things to remember

Projections are everywhere

For all days in March, find the number of
hospitalized people in the state of California.

Report each day when the number of new cases
exceeded 10% of the number of cumulative
cases.

Explicit
restrictions

Use Case #1: Support

Key things to remember

Projections are everywhere

Compute the ratio of people on ICU to all
hospitalized people

Create a “status” attribute. Set “status” to “in
trouble” if the number of new deaths exceeds
10% of the number of new cases. Otherwise, set
status to “coping”.

Use Case #2: Main Target

Key things to remember

Projections are everywhere

Compute the ratio of people on ICU to all
hospitalized people

Create a “status” attribute. Set “status” to “in
trouble” if the number of new deaths exceeds
10% of the number of new cases. Otherwise, set
status to “coping”.

Use Case #2: Main Target

Computation
(using single
object data)

Key things to remember

Projections are everywhere

Compute the ratio of people on ICU to all
hospitalized people

Create a “status” attribute. Set “status” to “in
trouble” if the number of new deaths exceeds
10% of the number of new cases. Otherwise, set
status to “coping”.

Use Case #2: Main Target

Computation
(using single
object data)

Explicit
Transformation

Key things to remember

Projections are everywhere

Use Case #3: Implicit Cleanup after Joins/Unwinds/Grouping

Key things to remember

Projections are everywhere

Use Case #3: Implicit Cleanup after Joins/Unwinds/Grouping

For each state report the total number of days with more than 10 ICU
patients. Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Key things to remember

Projections are everywhere Use Case #3: Implicit

For each state report the total number of days with more than 10 ICU
patients. Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

{$match: {...}},
{$group: {_id:”$state”,
 badICUDays: {$sum:1}}}

Key things to remember

Projections are everywhere Use Case #3: Implicit

For each state report the total number of days with more than 10 ICU
patients. Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

{$match: {...}},
{$group: {_id:”$state”,
 badICUDays: {$sum:1}}}

{_id: “CA”,
 badICUDays: 21 }

Key things to remember

Projections are everywhere Use Case #3: Implicit

For each state report the total number of days with more than 10 ICU
patients. Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

{$match: {...}},
{$group: {_id:”$state”,
 badICUDays: {$sum:1}}}

{_id: “CA”,
 badICUDays: 21 }

Key things to remember

Projections are everywhere Use Case #3: Implicit

For each state report the total number of days with more than 10 ICU
patients. Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

{$match: {...}},
{$group: {_id:”$state”,
 badICUDays: {$sum:1}}},
{$project: {_id:0, state:”$_id”}}

{state: “CA”,
 badICUDays: 21 }

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Is this a grouping and aggregation query?

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Is this a grouping and aggregation query?

Yes, with daily.json data

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Is this a grouping and aggregation query?

Yes, with daily.json data

 { "_id" : ObjectId("5e941e9cf9e720b73b7d96ff"),
 "date" : 20200405,
 "state" : "AK",
 "positive" : 185,
 "negative" : 6099,
 "pending" : null,
 "hospitalizedCurrently" : null,
 "hospitalizedCumulative" : 20,

 "inIcuCurrently" : 12,
 "inIcuCumulative" : null,
 "onVentilatorCurrently" : null,
 "onVentilatorCumulative" : null,
 "recovered" : null,
 "hash" : "661d7b0f627847a2dceb5d70d4e9260965031cc2",
 "dateChecked" : "2020-04-05T20:00:00Z",
 "death" : 6,
 "hospitalized" : 20,
 "total" : 6284,
 "totalTestResults" : 6284,
 "posNeg" : 6284,
 "fips" : "02",
 "deathIncrease" : 1,
 "hospitalizedIncrease" : 4,
 "negativeIncrease" : 230,
 "positiveIncrease" : 14,
 "totalTestResultsIncrease" : 244}

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Is this a grouping and aggregation query?

No, with other input data

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

Is this a grouping and aggregation query?

No, with other input data

 { "_id" : 8888,
 state: “CA”,

 month: “March”,
 badICUDays: 9,
 goodICUDays: 4,
 noInfo: 17,
 cumulativeICUPatients: 88
 }

Key things to remember

Grouping combines data from multiple documents into one

For each state report the total number of days with more than 10 ICU patients.
Report results in the form:

{state: <state>,
 badICUDays: <nDays>}

KNOW YOUR DATA!!!

Key things to remember

Grouping does NOT always mean aggregation

For each state create a list of dates when there were more than 10 ICU patients

Key things to remember

Grouping does NOT always mean aggregation

For each state create a list of dates when there were more than 10 ICU patients

$push
$addToSet

Are your biggest friends!

Key things to remember

We can “hide” information while grouping

$push
$addToSet

Are your biggest friends!

{$group:
 {_id:”$state”,
 avgPatients:{$avg:”$hospitalized”},
 $push: {$hospitalized}
 }
}

Key things to remember

We can “hide” information while grouping

$push
$addToSet

Create array attributes

We can “unhide” information AFTER grouping

Key things to remember

We can “hide” information while grouping

$push
$addToSet

Create array attributes

We can “unhide” information AFTER grouping
{$group:
 {_id:”$state”,
 avgPatients:{$avg:”$hospitalized”},
 data: $push: {$hospitalized}
 }
},

{$unwind: “$data”}

$unwind after $group

Key things to remember

We can “hide” information while grouping

We can “unhide” information AFTER grouping

Grouping combines data from multiple documents into one

Grouping does NOT always mean aggregation

Compound Keys $first, $last constant key values

Key Things To Remember

Joins involve comparisons of documents to documents

Key Things To Remember

Joins involve comparisons of documents to documents

Use Case #1: Join to different collections

Use Case #2: Self Join

Often can be avoided by embedding documents

Students take Courses

(StudentID, Name)
(CourseID, Name,Section, Instructor)(StudentID, Course, Section)

SELECT * FROM Students s, take t, Courses c
WHERE s.StudentID = t.StudentId and t.Course = C.CourseID
 and t.Section = C.Section

Students take Courses

(StudentID, Name)
(CourseID, Name,Section, Instructor)(StudentID, Course, Section)

{course: “CSC 369”,
 roster: [{student:”Bob Smith”},
 {student:”Alice Lee”},
 ...
]
}

Key Things To Remember

Joins involve comparisons of documents to documents

Use Case #1: Join to different collections

Use Case #2: Self Join

$lookup is expensive. Self Joins can be “tricked”

Key Things To Remember

Joins involve comparisons of documents to documents

Use Case #1: Join to different collections

Use Case #2: Self Join

$lookup is expensive. Self Joins can be “tricked” with $group

Tricks
and

dealing with MongoDB idiosyncrasies

Trick 1: $project as a filter

Problem: $match cannot compare two attributes to each other

Report each day when the number of new cases exceeded
10% of the number of cumulative cases.

{ …
 positive: 566,
 positiveIncrease: 65
 …
}

{$match:
 {positiveIncrease: {$gt: {$multiply: [0.1,
 $positive”]}}}}

Trick 1: $project as a filter

Problem: $match cannot compare two attributes to each other

Report each day when the number of new cases exceeded
10% of the number of cumulative cases.

{ …
 positive: 566,
 positiveIncrease: 65
 …
}

{$project:
 {flag: {$cond: [{$gt: [{“$positiveIncrease”,
 {$multiply: [“$positive”,
 0.1]}]},
 True,
 False
 }]}}

Trick 1: $project as a filter

Problem: $match cannot compare two attributes to each other

Report each day when the number of new cases exceeded
10% of the number of cumulative cases.

{ …
 positive: 566,
 positiveIncrease: 65
 …
}

{$project:
 {flag: {$cond: [{$gt: [{“$positiveIncrease”,
 {$multiply: [“$positive”,
 0.1]}]},
 True,
 False
 }]}},
{$match: {flag: True}}

Trick 1: $project as a filter

Problem: $match cannot compare two attributes to each other

Report each day when the number of new cases exceeded
10% of the number of cumulative cases.

{ …
 positive: 566,
 positiveIncrease: 65
 …
}

{$project:
 {flag: {$cond: [{$gt: [{“$positiveIncrease”,
 {$multiply: [“$positive”,
 0.1]}]},
 True,
 False
 }]}},
{$match: {flag: True}}

Trick 1: $project as a filter

Problem: $match cannot compare two attributes to each other

All computations can and should be done in $project

Trick 2: Who has the optimal value?

Problem: {$sort: {foo:-1}},{limit:1} fails when there are ties

Report the state and the date of the largest single increase in the number
of positive cases.

Trick 2: Who has the optimal value?

Problem: {$sort: {foo:-1}},{limit:1} fails when there are ties

Report the state and the date of the largest single increase in the number
of positive cases.

Step 1: Use $group $push to “hide” data
 Use constant for grouping value

Step 1.5: Unwind

Trick 2: Who has the optimal value?
Report the state and the date of the largest single increase in the number
of positive cases.

{ _id: “1”,
 largestIncrease: 10841
 data: [{...},{...},...,{...}]
}

{$unwind:”$data”}

{ _id: “1”,
 largestIncrease: 10841
 data: {...}
}

Trick 2: Who has the optimal value?
Report the state and the date of the largest single increase in the number
of positive cases.

{ _id: “1”,
 largestIncrease: 10841
 data: [{...},{...},...,{...}]
}

{$unwind:”$data”}

{ _id: “1”,
 largestIncrease: 10841
 data: {...}
}

{$project ...}

Get rid of embedding if needed

Bulky, but
straightforward
and repeatable

Trick 2: Who has the optimal value?

Problem: {$sort: {foo:-1}},{limit:1} fails when there are ties

Report the state and the date of the largest single increase in the number
of positive cases.

Step 1: Use $group $push to “hide” data
 Use constant for grouping value

Step 1.5: Unwind
 And $project if desired

Step 2. See Trick 1 to finish

Trick 3: Join Avoidance

Self-joins can be done outside of $lookup

But with some painful manipulations

Leverage $group $push / $addToSet
 $unwind
 $project

Trick 4: Generalizing Joins

Problem: $lookup is a left outer equijoin

Joins can be more complex:

Trick 4: Generalizing Joins

Problem: $lookup is a left outer equijoin

Joins can be more complex:

Report governors of all states with less than 400 positive cases per
million on April 4, 2020

daily.json
{state: “CA”
 governor:”Gavin Newsom”
 population: 39510000}

Trick 4: Generalizing Joins

Problem: $lookup is a left outer equijoin

Joins can be more complex:

Report governors of all states with less than 400 positive cases per
million on April 4, 2020

{...
state:”CA”
positive: 12026
...
}

{state: “CA”
 governor:”Gavin Newsom”
 population: 39510000}

Trick 4: Generalizing Joins

Problem: $lookup is a left outer equijoin

Joins can be more complex:

Report governors of all states with less than 400 positive cases per
million on April 4, 2020

Join = Cartesian Product followed by Selection

Trick 4: Generalizing Joins

Problem: $lookup is a left outer equijoin

Joins can be more complex:

Report governors of all states with less than 400 positive cases per
million on April 4, 2020

Join = Cartesian Product followed by Selection
Use for comparisons
(Trick 1)

