

CSC 369: Distributed Computing

Alex Dekhtyar

Day 12: MapReduce

May 1

Housekeeping

Quiz: Stat Individual Team Lift

Mean 16.94

Median 17

Standard
Deviation 4.73

Max 27

Min 10

Housekeeping

Quiz: Stat Individual Team Lift

Mean 16.94 21.85 4.91

Median 17 21.5 4.25

Standard
Deviation 4.73 4.37 4.97

Max 27 29 14

Min 10 13 -7

Housekeeping

Lab 4:
Test Cases are now correct

Remote MongoDB connection

 “server”: “ambari-head.csc.calpoly.edu”

Cal Poly VPN

Robot Password Changes

Housekeeping

Lab 4:
Test Cases are now correct

Remote MongoDB connection

 “server”: “ambari-head.csc.calpoly.edu”

Cal Poly VPN

Robot Password Changes

MapReduce

Motivation: The Google Example
The World Wide Web:

...

Motivation: The Google Example
The World Wide Web:

...

{“Cal”, “Poly”, “San”, “Luis”, “Obispo”,.... }

Motivation: The Google Example
The World Wide Web

...

{“Cal”, “Poly”, “San”, “Luis”, “Obispo”, “university”.... }

{“Covid-19”, “San”, “Luis”, “Obispo”, “positive”...}

{“Covid-19”, “Newsom”, “beach”, “stay-at-home”...}

{“students”, “university”, “on-line”, “classes”, “sleep”

Motivation: The Google Example
The Inverted Index

“university”

“Covid-19”

“Luis”

“Obispo”

“beach”

“sleep”

...

Motivation: The Google Example
The Inverted Index

“university”

“Covid-19”

“Luis”

“Obispo”

“beach”

“sleep”

...

...

...

...

...
...

...

Motivation: The Google Example
The Inverted Index

“university”

“Covid-19”

“Luis”

“Obispo”

“beach”

“sleep”

...

...

...

...

...
...

...

BUT HOW?

Distributed
(Petabyte scale index)

Fast

Simple to write

MapReduce
Jeffrey Dean, Sanjay Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters

Noticed that a lot of code of distributed computing kept doing same “types” of things.

Writing distributed code is hard

Proposed a level of abstraction

Data

<key,value> pairs

Data Processing

<key,value> pairs

All distributed computing reduced to three types of operations

Map: from <key, value> → <key1, value1>

Shuffle: collect keys

Reduce: from <key, [value1,value2,..,valueN] → <key1, value1>

Data Processing

<key,value> pairs

All distributed computing reduced to three types of operations

Map: from <key, value> → <key1, value1>

Shuffle: collect keys

Reduce: from <key, [value1,value2,..,valueN] → <key1, value1>

(most always the same)

MapReduce
Write a Map() and Reduce() transformations of data
● Simple code

Build a distributed computing framework that does the rest

MapReduce: Inverted Index
Map(key, value): //key=url, value= bag of words
 for word in value do

emit(word, key)
 end for

Reduce(key, values)://key=word, values= [url1,...,urln]
return(key, values)

More Formally: Map()
Map: K x V → K’ x V’

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

Transformation

More Formally: Map()
Map: K x V → {K’ x V’}

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

Transformation

More Formally: Map()
Map: K x V → {K’ x V’}

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

Transformation

emit() instead of return()

More Formally: Map()
Map: K x V → {K’ x V’}

map(key, value): //value - bag of words
 for word in value:

 emit(word,1)
 end for

More Formally: Reduce()
Reduce: K x (V)* → (V)*

Reduce K x (V)* → K x (V)*

Aggregation

More Formally: Reduce()
Map: K x (V)* → (V)*

Map: K x (V)* → K x (V)*

reduce(key, value): //value - [1,1,1,...,1]
 count := 0
 for x in value:

 count := count+x
 end for
 emit(key, count)

Map-Shuffle-Reduce

Map-Shuffle-Reduce

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Map-Shuffle-Reduce

Mappers

Shuffle

Map-Shuffle-Reduce

Mappers

Shuffle

Reducers

Map-Shuffle-Reduce

Mappers

Shuffle

Reducers

Map-Shuffle-Reduce

Mappers

Shuffle

Reducers

Map-Shuffle-Reduce

Map-Shuffle-Reduce

Mappers

Shuffle

Reducers

Map-Shuffle-Reduce

