

CSC 369: Distributed Computing

Alex Dekhtyar
May 1

Day 12: MapReduce

Housekeeping

Quiz:

Stat Individual Team Lift
Mean 16.94

Median 17

Standard

Deviation 4.73

Max 27

Min 10

Housekeeping

Quiz:

Stat Individual Team Lift
Mean 16.94 21.85 4.91
Median 17 21.5 4.25
Standard

Deviation 4.73 4.37 4.97
Max 27 29 14
Min 10 13 -7

Housekeeping

Lab 4:

Test Cases are now correct

Remote MongoDB connection

”.

“server”. “ambari-head.csc.calpoly.edu”
Cal Poly VPN

Robot Password Changes

Housekeeping

Lab 4:

Test Cases are now correct

Remote MongoDB connection

”.

“server”. “ambari-head.csc.calpoly.edu”
Cal Poly VPN

Robot Password Changes

MapReduce

Motivation: The Google Example

The World Wide Web:

Motivation: The Google Example

The World Wide Web:

&=

mp (Cal’, "Poly’, “San’, “Luis’, “Obispo”....

r
r

o

Motivation: The Google Example
; » {"Cal”, “Poly”, “San”, “Luis”, “Obispo”, “university".... }

- {*Covid-19”, “San”, “Luis”, “Obispo”, “positive”...}

I ; - {*Covid-19”, “Newsom”, “beach”, “stay-at-home”...}

j - {*students”, “university”, “on-line”, “classes”, “sleep”

Motivation: The Google Example

The Inverted Index

“university”

“Covid-19”

“Luis”

“Obispo”

“beach”

“Sleep”

Motivation: The Google Example

The Inverted Index

“university”

“Covid-19”

“Luis”

NN

“Obispo”

“beach”

Pl

RTINS

“Sleep”

Motivation: The Google Example

The Inverted Index

“university”

“Covid-19”

“Luis”

“Obispo”

“beach”

Pl

RTINS

“sleep”

NN

BUT HOW?

Distributed
(Petabyte scale index)

Fast

Simple to write

MapReduce

Jeffrey Dean, Sanjay Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters

Noticed that a lot of code of distributed computing kept doing same “types” of things.

Writing distributed code is hard

Proposed a level of abstraction

Data

<key,value> pairs

Data Processing

<key,value> pairs

All distributed computing reduced to three types of operations

Map: from <key, value> — <key1, value1>
Shuffle: collect keys

Reduce: from <key, [value1,value2,..,valueN] — <key1, value1>

Data Processing

<key,value> pairs

All distributed computing reduced to three types of operations

Map: from <key, value> — <key1, value1>
Shuffle: collect keys (most always the same)

Reduce: from <key, [value1,value2,..,valueN] — <key1, value1>

MapReduce

Write a Map() and Reduce() transformations of data
e Simple code

Build a distributed computing framework that does the rest

MapReduce: Inverted Index

Map (key, value) : //key=url, value= bag of words
for word in wvalue do
emit (word, key)
end for

Reduce (key, values) ://key=word, values= [urll,...,urln]
return (key, values)

More Formally: Map()

Map: KxV—- K xV’

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

Transformation

More Formally: Map()

Map: Kx V—fK x V}

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

Transformation

More Formally: Map()

Map: Kx V—fK x V}

K, K’ -- universes of keys

V, V’ -- universes of values (can be compound)

emit() instead of return()

Transformation

More Formally: Map()

Map: Kx V—fK x V}

map (key, value): //value - bag of words
for word in value:
emit (word,1l)
end for

More Formally: Reduce()

Reduce: K x (V)* — (V)*

Reduce K x (V)* = K x (V)*

Aggregation

More Formally: Reduce()

Map: K x (V)*— (V)*

Map: K x (V)* — K x (V)*

reduce (key, value): //value - [1,1,1,...,1]
count := 0
for x in value:
count := count+x
end for
emit (key, count)

Map-Shuffle-Reduce

RINIHHTRITE

Map-Shuffle-Reduce

I

Map-Shuffle-Reduce

L

ppppppp

Map-Shuffle-Reduce

L]

L]
L]

Map-Shuffle-Reduce

L]

1 »
E—

—'I
]
]
— i
]

Mappers

Map-Shuffle-Reduce

>
])
1 » :
—

-
]
L]
=
]

Mappers

Map-Shuffle-Reduce

—»
—

-
]
L]
=
]

Mappers

Map-Shuffle-Reduce

—
s

E—
=N
—

—
—] ‘.
—

Mappers

THITEEL

Map-Shuffle-Reduce

—
s

E—
=N
—

—
—] ‘.
—

Mappers

THITEEL

Shuffle

v

Map-Shuffle-Reduce

—
s

E—
=N
—

—
—] ‘.
—

Mappers

THITEEL

Shuffle

v

(VAN AN

Reducers

Map-Shuffle-Reduce

] >

—# S

—‘. %

—‘.g

3
Mappers C
3

Shuffle

v

ML

(VAN AN

Reducers

Map-Shuffle-Reduce

—
s

=N
—
—
—] ‘.
—

Mappers

I

L
uuuw

>

Shuffle e

o)

—
)
3

\/ Reducers

THITEEL

Map-Shuffle-Reduce

—
s

=N
—
—
—] ‘.
—

Mappers

THITEEL

Shuffle

v

I

>

L

)

—
)
3

UUUU

i i1

Reducers

