// CSC 369: Distributed Computing
// Alex Dekhtyar

// Java Hadoop Template
// Multiple input files

// Section 1: Imports


                  // Data containers for Map() and Reduce() functions

                  // You would import the data types needed for your keys and values

import java.util.ArrayList;
import java.util.ListIterator;

import org.apache.hadoop.io.IntWritable; // Hadoop's serialized int wrapper class
import org.apache.hadoop.io.LongWritable; // Hadoop's serialized int wrapper class
import org.apache.hadoop.io.Text;        // Hadoop's serialized String wrapper class
import org.apache.hadoop.mapreduce.Mapper; // Mapper class to be extended by our Map function
import org.apache.hadoop.mapreduce.Reducer; // Reducer class to be extended by our Reduce function
import org.apache.hadoop.mapreduce.Job; // the MapReduce job class that is used a the driver
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; // class for "pointing" at input file(s)
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; // class for  standard text input
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs; // class for "pointing" at input file(s)
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; // class for "pointing" at output file
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; // key-value input files
import org.apache.hadoop.conf.Configuration; // Hadoop's configuration object


import org.apache.hadoop.fs.Path;                // Hadoop's implementation of directory path/filename


// Exception handling

import java.io.IOException;


public class multiInMR {


// Mapper  Class Template


public static class UserMapper     // Need to replace the four type labels there with actual Java class names
     extends Mapper< Text, Text, Text, Text > {

// @Override   // we are overriding Mapper's map() method

// map methods takes three input parameters
// first parameter: input key 
// second parameter: input value
// third parameter: container for emitting output key-value pairs

public void map(Text key, Text value, Context context)
      throws IOException, InterruptedException {

        String name = value.toString();
        String out = "A\t"+name;
        context.write(key, new Text(out));


 } // map

}  // mapper class


public static class MessageMapper     // Need to replace the four type labels there with actual Java class names
     extends Mapper< LongWritable, Text, Text, Text > {

// @Override   // we are overriding Mapper's map() method

// map methods takes three input parameters
// first parameter: input key 
// second parameter: input value
// third parameter: container for emitting output key-value pairs

public void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {


        String text[] = value.toString().split(",");
        if (text.length == 2) {
          String id = text[0];
          String message = text[1];
          String out = "B\t"+ message;
          context.write(new Text(id), new Text(out));
        }

 } // map




} // MyMapperClass


//  Reducer Class Template

public static class JoinReducer   // needs to replace the four type labels with actual Java class names
      extends  Reducer< Text, Text, Text, Text> {

 // note: InValueType is a type of a single value Reducer will work with
 //       the parameter to reduce() method will be Iterable<InValueType> - i.e. a list of these values

//@Override  // we are overriding the Reducer's reduce() method

// reduce takes three input parameters
// first parameter: input key
// second parameter: a list of values associated with the key
// third parameter: container  for emitting output key-value pairs

public void reduce( Text key, Iterable<Text> values, Context context)
     throws IOException, InterruptedException {
 
  ArrayList<String> name = new ArrayList();
  ArrayList<String> messages = new ArrayList();

  for (Text val : values) {
    context.write(key, val);

  }

//    String text[] = val.toString().split("\t");
//    if (text.length ==2) {
//       String v = text[1];
//       String label = text[0];
// 
//      if (label.contains("A")) {
//        name.add(v.toString());
//       }
//      if (label.contains("B")) {
//         messages.add(v.toString());
//       }
//     }
//   }  // for

 //  ListIterator<String> nameIterator = name.listIterator();
 
//   while (nameIterator.hasNext()) {
//      String user = nameIterator.next();
//      ListIterator<String> msgIterator = messages.listIterator();
//   
//      while (msgIterator.hasNext()) {
//         String msg = msgIterator.next();
//        
//         context.write(new Text(user), new Text(msg)); 
//      }

//   }  // while (outer)



 } // reduce


} // reducer


//  MapReduce Driver


  // we do everything here in main()
  public static void main(String[] args) throws Exception {

		// Step 0: let's  get configuration

      Configuration conf = new Configuration();
      conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator",","); // learn to process two-column CSV files.


     // step 1: get a new MapReduce Job object
     Job  job = Job.getInstance(conf);  //  job = new Job() is now deprecated
     
    // step 2: register the MapReduce class
      job.setJarByClass(multiInMR.class);  

   //  step 3:  Set Input and Output files
       MultipleInputs.addInputPath(job, new Path("./test/", "users.in"),
                       KeyValueTextInputFormat.class, UserMapper.class ); // put what you need as input file
       MultipleInputs.addInputPath(job, new Path("./test/", "messages.in"),
                       TextInputFormat.class, MessageMapper.class ); // put what you need as input file


       FileOutputFormat.setOutputPath(job, new Path("./test/","mout")); // put what you need as output file

   // step 4:  Register  reducer
      job.setReducerClass(JoinReducer.class);
  
   //  step 5: Set up output information
       job.setOutputKeyClass(Text.class); // specify the output class (what reduce() emits) for key
       job.setOutputValueClass(Text.class); // specify the output class (what reduce() emits) for value

   // step 6: Set up other job parameters at will
      job.setJobName("Reduce Side Join");

   // step 7:  ?

   // step 8: profit
      System.exit(job.waitForCompletion(true) ? 0:1);


  } // main()


} // MyMapReduceDriver