
. .
Winter 2019 CSC/CPE 369: Database Systems Alexander Dekhtyar
. .

Lab 3: MongoDB queries and aggregations

Due date: Monday, January 28, 11:59pm.

Lab Assignment

Assignment Preparation

This is an individual lab. I expect every person to complete it without
consulting others.

This is a two-part lab. The first part of the lab is relatively short and is
simply designed to reinforce your familiarity with MongoDB’s db.collection.find()
command. The second part of the lab asks you to express a number of in-
formation needs as MongoDB aggregation pipelines.

Data

You will primarily be working with the Iowa Liquor sales data. I have created
a MongoDB database iowa. The database has a number of collections in it,
but the two collections you shall be using for this assignment are:

invoices: the list of 10,000 invoices with all numeric attributes
properly parsed.

populations: the list of counties with population numbers prop-
erly parsed.

Essentially, these two collections contain the ”correct” versions of the data.
In the invoices collection you will find an " id" attribute that uses the in-
voice Id as the unique Id of the record (the original "Invoice/Item Number"

key is also present in the record). Additionally, all attributes that had values
prefixed with the dollar sign in the original JSON ("State Bottle Cost",

1

"State Bottle Retail", "Sale (Dollars)") have these values converted
to proper floating point values. Similarly, in the populations collection, the
" id" attribute replaces the original "id", the values of the "population"
attribute are converted to proper integers (JSON had a comma in the values,
and that meant parsing them as strings by default), and finally, the county
name is stripped of the word "County" - this should matching county names
between different collections more straightforward.

DO NOT USE ANY OTHER COLLECTIONS in your work.

db.collection.find() Queries

The main objective of this lab is for each of you to get comfortable using
MongoDB’s find() command. To that extent, you will write 20 MongoDB

queries: 10 for each of the dataset.

Query preparation and submission. For each dataset, you will submit
your queries in two separate ways:

1. Text file. Create text file lab3.mongo and and include all your queries
there. Each query must be on its own lines, prefaced with a Javascript
comment line specifying the query number and with at least one empty
line between queries. The header of the file must contain one or more
Javascript comment lines identifying with your name and other infor-
mation about the file. The expected format is something like this:

// CSC 369. Lab 3.

// Alex Dekhtyar -- you would be putting your name here

//

// Query 1

db.invoices.find(...)...

// Query 2

db.invoices.find(...)...

...

//end of queries

2. Python program. Create a python program queries.py that

• accesses MongoDB through localhost connection,

• reads in a file named credentials.auth (see below),

• uses its contents to authenticate the MongoDB session,

• switches to the iowa database, and

• one by one runs each of your db.collection.find() queries,
collects the output, and prints the output to terminal prefacing
it with the query id and the query text.

2

The output of the program shall look roughly as follows:

Query 1:

db.invoices.find(...)...

Output:

{...

...

}

...

{...

...

}

Query 2

....

Query boundaries shall be easily viewable. Output itself may be either
in the form of an array of JSON objects, or simply pretty printed JSON
objects separated by new lines (I don’t care about the proper JSON
syntax in the output, but I don’t mind it either - do whatever is easiest
for you).

credentials.auth file. The credentials.auth file shalle contain a single
JSON object describing the authentication credentials of a given user. The
JSON object shall have the following format:

{ user: "<username>",

pwd: "<password>",

db: "<authentication database>"

}

For example, a file for used bob can look as follows:

{ user: "bob",

pwd: "xyzw1234!",

db: "admin"

}

This way, I can run your programs using my own credentials without
having you to disclose yours to me.

Queries

Write MongoDB db.<collection>.find() queries that produce answers to
each of the questions below. Each question must be answered with exactly
one find() command.

3

1. Find all invoices for sales of alcohol from the "VODKA 80 PROOF" cat-
egory, that resulted in over $1000 sale. For each invoice report its
number (" id" is enough) as well as the sale date, description of the
specific item sold, number of bottles sold, and the total amount of the
sale. Sort the output in descending order of the dollar amount of the
sale. Pretty print the output.

2. Find the total number of the sales of "PEACH BRANDIES" and "APPLE

SCHNAPPS" to stores in Polk County. Report just the number.

3. Find all instances (invoices) documenting the sales of more than 2 gal-
lons of alcohol to "H abd A Mini Mart Corp" located in "DES MOINES"

(city). Sort the invoices in descending order by the total amount of
sale in dollars, and output the top three invoices. For each invoice keep
the invoice number, the category of the spirit sold, name of the specific
spirit ("Item Description"), number of bottles, and the total dollar
amount of sale. Pretty print the output.

4. Find all sales by vendor named "Diageo Americas" in which over
100 bottles were sold. Report only the specific type of spirit ("Item
Description") for each sale1. Sort output in alphabetical order by
the name of the spirit.

5. Find the most recent (latest by date) sale of more than 40 bottles
to a store in one of the following counties: "Linn", "Cerro Gordo",

"Johnson", "Scott". Report the date, the name of the store, the
county and city it is in, the description of the spirit purchased, number
of bottles, and the total amount of sale in dollars. Pretty print the
output.

6. Find the spirit sold to a store in Iowa with the largest retail price per
bottle. Report the name of the spirit (Item Description) and the
retail and state bottle costs 2. Pretty print the output.

Aggregation Pipeline Queries

In this part of the lab, you will be replicating, as a MongoDB aggregation

pipeline the seven tasks from Lab 1. For the sake of simplicity, the tasks are
restated below.

Task 1. Compute the following information:

• Total number of bottles sold

• Total volume of alcohol sold in liters

1Do not worry about eliminating duplicates.
2With the data you have, there should be a unique answer spirit that matches the

query.

4

• Overall revenue derived from all the sales

• Average price per bottle

This information has to be computed over the entire dataset, and re-
ported back as a single JSON object with the structure (the field names are
self-explanatory):

{

bottles: <number of bottles>,

volume : <volume of alcohol in liters>,

revenue: <overall revenue>,

averagePrice: <average price per bottle>

}

Pretty print your output.

(Please note, this may take more than one aggregation pipeline step to
accomplish.)

Task 2: We are interested in grouping some basic information about pur-
chases made by each store into a single JSON document. Write an aggre-
gation pipeline which produces one JSON object per each individual

store. The object shall have the following format:

{ store: <number>,

storeName: <store name>,

purchases: [{invoice: <invoice #>,

amount: <total dollar amount of purchase>}, ...

]

dates: [<date1>, <date2>,...]

}

Here, store and storeName are the Store Number and Store Name values
from the original JSON documents; purchases contains an array of objects
that document the invoice number and the Sale (Dollars) for each sale
for that store, and dates is an array that stores without duplication all
dates on which purchases were made by the given store. (Note: we, for this
lab, are removing the requirement for the dates to be in chronological order.
This is due to the fact that Date keys have string values in the format that
is a bit difficult to properly sort outright.)

Task 3: We are interested in figuring out the distribution network for
the wholesale alcohol sales. Write an aggregation pipeline that for each
distributor (vendor) lists all stores to which it delivered. The format of the
output is

5

{

vendorId : <vendor number>,

vendorName: <vendor name>,

stores: [{storeId: <store number>,

store: <store name>,

county: <county>

}, ...

]

}

Please make sure that each store shows up exactly once in the array.

Task 4: We would like to find out all varieties of the category "VODKA 80

PROOF" that are being sold in the State of Iowa. Analyze the input dataset
to discover such varieties and output them in the following format:

{type: "VODKA 80 PROOF",

id: <unique id of the type of alcohol>,

description: <name of the alcohol>

}

for each type of sold vodka with no duplicate entries. Note that the value
of the type field is kept constant in your output, while id comes from the
Item Number field in your original data, and description comes from the
Item Description field.

(Note: you can substitute " id" attribute name for "id" attribute name
if this makes your query simpler to write.)

Task 5: We want to figure out how many individual sales (i.e., you are
counting number of invoices) took place for each category of liquor sold in
Iowa. Your output shall have the following format:

{

catId: <category id>,

category: <category name>,

nSales: <number of sales>

}

The output shall contain one object per category, and shall be sorted in
ascending order by category Id.

Preparing aggregation pipeline queries for submission

As with db.collection.find() queries, you will prepare the aggregation
pipeline queries for submission in two ways.

6

Text file. Create a file lab3-aggregation.mongowith the same structure
as your lab3.mongo file for db.collection.find() queries, and place the
aggregation pipeline queries in it.

Python Program. Create a Python program aggregation.py that ac-
cesses MongoDB through localhost connection, reads the file named credentials.auth,
uses its contents to authenticate MongoDO session, switches to the iowa

database and runs one-by-one all aggregation pipeline queries, and prints
their output, prefacing each query output with the text of the query and
the query Id.

Submission

Submit the following artefacts:

• README file with your name and any comments regarding your submis-
sion.

• lab3.mongo and lab3-aggregation.mongofiles containing your db.collection().find()
and your aggregation pipeline queries respectively.

• queries.py and aggregation.py files.

• Outputs produced by queries.py and aggregation.py (redirect out-
put to a file). Name the outputs queries.out and aggregations.out.

All code must have a title comment with your name in it.

Submit all your code in a single archive (zip or tar.gz).

Use handin to submit as follows:

$ handin dekhtyar lab3 <FILES>

Good Luck!

7

