
. .
Winter 2017 CSC/CPE 369: Database Systems Alexander Dekhtyar
. .

Lab 6: Intricate Hadoop Programs

Due date: March 1, 11:59pm.

Note: Lab 7 will be assigned some time during your period of work on
Lab 6.

Lab Assignment

Assignment Preparation

This is a pair programming lab. You can pair with anyone in the class.
Please note, this is NOT a ”team of two” lab. The difference is that you
must work on each program in this assignment together with your partner.

Overview

In this lab we use three datasets - our iowa.csv data for 10,000 purchases
of alcohol in Iowa, a collection of free books from Project Guttenberg, and a
dataset of student performance on math, reading and writing standardized
assessments.

All datasets you need to use are uploaded to the /data directory on HDFS.
You all should have read access to all files in that directory.

For each dataset, the assignment asks you to answer one or more ques-
tions by building appropriate Hadoop MapReduce programs. As a rule, you
are asked to build one program per question asked (unless otherwise men-
tioned). At the same time, the structure of your programs may exceed the
traditional single MapReduce job we have been seeing thus far. All addi-
tional information about each dataset (data format, etc.) is linked to from
the Lab 6 web page:

http://users.csc.calpoly.edu/~dekhtyar/369-Winter2019/labs/lab06.html

1

1 Iowa Liquor sales dataset.

Your first two programs will work with the Iowa Liquor sales dataset. In
addition to the iowa.csv file, you will use the counties.json file (note -
it contains multi-line JSON objects, I am releasing an example of how this
can be managed using a third-party InputFormat class, but we won’t have
time in class to concentrate on this: use the provided example to make it
work).

The iowa.csv file has the following format:

The file represents a CSV version of some of the data from our Iowa liquor
sales database. Each line in the file is a single record in the format (in a
single line)

<Invoice>, <Store Number>, <Store County>, <Vendor Name>, <Item Number>, <Item Description>,

<Bottles Sold>, <Sale (Dollars)>

Here are a few sample lines from the input file:

’S24966600138’,2614,’Scott’,’Brown-Forman Corporation’,86817,’Southern Comfort Cherry’,2,29.56

’S24043700013’,2641,’Pottawattamie’,’Mccormick Distilling Company’,36903,’Mccormick Vodka’,96,163.2

’S22293800009’,4925,’Polk’,’Sazerac Co., Inc.’,64866,’Fireball Cinnamon Whiskey’,12,161.64

’S15881700017’,3976,’Iowa’,’Luxco-St Louis’,81208,’Paramount Peppermint Schnapps’,2,21.24

The counties.json file contains records in the following format:

{

"id": <county Id>,

"county": <county Name>,

"population": <county population>

}

Here is an example of a record:

{

"id": "95 ",

"county": "Taylor County ",

"population": "6,214"

}

Please note that population is recorded as a string with a ”,” separating
thousands.

The two files are available in the hdfs /data/ directory.

Program 1: PerCapita.java

In what is now a well-established tradition of this class, you are going to
repeat a problem from Lab 1 again, now in Hadoop1.

1You can also be assured that a Spark implementation of this and one or two other

problems familiar to you is coming. This gives you an opportunity to compare and contrast

2

Compute per capita sales of alcohol to liquor stores by county. Output the
name of the county (you can choose whether the word ”county” is present
in the output or not), the total sales in dollars of the alcohol to stores in the
county, and the per capita sales.

Hint. This is more or less a straightforward join. You have a choice
whether you want to use map-side or reduce-side join. Because another as-
signment will require a map-side join/use of distributed cache, I recommend
a reduce-side join for this problem. Use the om.alexholmes.json.mapreduce.MultiLineJsonInputFormat
class provided to you.

Problem 2: Correlation.java

We want to understand whether the number of sales of different types of
alcohol to different counties are correlated. For this assignment, we con-
centrate on two types of alcohol: vodka and rum. To determine whether a
specific sale documented in the iowa.csv file is a rum or a vodka sale, you
need to detect words "Rum", "rum", "Vodka", or "vodka" in the text of
the <Item Description> column. Ignore all other drink sales2.

For each county, compute two numbers: the total number of sales of rum
and the total number of sales of vodka (”total number of sales” = number of
unique receipts). With the two sets of sales, compute the Pearson correlation
between them, and output just the correlation.

Let rum = (r1, . . . , rn) and vodka = (v1, . . . , vn) where n is the number
of Iowa counties, and ri and vi are the number of sales of rum and vodka
repspectively for the same county for each i. Then, the Pearson correlation
between rum and vodka is found as follows:

pearson(rum, vodka) =

∑

n

i=1
(ri − µrum)(vi − µvodka)

√

∑

n

i=1
(ri − µrum)2

√

∑

n

i=1
(vi − µvodka)2

Here,

µrum =
1

n

∑

i=1

nri;µvodka =
1

n

n
∑

i=1

are the means of the rum and vodka vectors respectively. In your compu-
tations you can use a hardcoded value of n for the total number of counties
in Iowa (it is 99, I believe).

your implementations in different frameworks.
2That is - it is possible that a rum or a vodka do not have the words ”Rum”, ”rum”,

”Vodka”, or ”vodka” in their description. You can ignore such sales for the purposes of

this exercise.

3

Hints. This requires multiple MapReduce cycles. You need a cycle to
compute histograms of rum and vodka purchases by county. You also need
to compute the means for the number of rum and number of vodka sales
in a single county. These means need to be used in the computation of the
Pearson correlation.

There are multiple different MapReduce architectures that will allow you
to perform this computation. Individual Map and Reduce functions are
going to be relatively straightforward. The complexity of this problem is
in proper organization of the MapReduce Jobs, and passing of information
from one job to another. You may find using a Distributed Cache convenient
at some point, although there are solutions that do not require it.

Guttenberg Dataset

The Guttenberg dataset is a collection of eleven3 text files containing most
downloaded Project Guttenberg English-language books during the week of
Feburary 3–9. The books are found in the /data/Guttenberg directory:

$ hdfs dfs -ls /data/Guttenberg

Found 11 items

-rw-r--r-- 3 hdfs hdfs 173595 2019-02-15 01:13 /data/Guttenberg/11-0.txt

-rw-r--r-- 3 hdfs hdfs 724726 2019-02-15 01:13 /data/Guttenberg/1342-0.txt

-rw-r--r-- 3 hdfs hdfs 51185 2019-02-15 01:13 /data/Guttenberg/1952-0.txt

-rw-r--r-- 3 hdfs hdfs 234041 2019-02-15 01:13 /data/Guttenberg/219-0.txt

-rw-r--r-- 3 hdfs hdfs 1276201 2019-02-15 01:13 /data/Guttenberg/2701-0.txt

-rw-r--r-- 3 hdfs hdfs 616320 2019-02-15 01:13 /data/Guttenberg/76-0.txt

-rw-r--r-- 3 hdfs hdfs 450783 2019-02-15 01:13 /data/Guttenberg/84-0.txt

-rw-r--r-- 3 hdfs hdfs 804335 2019-02-15 01:13 /data/Guttenberg/98-0.txt

-rw-r--r-- 3 hdfs hdfs 39700 2019-02-15 01:13 /data/Guttenberg/pg1080.txt

-rw-r--r-- 3 hdfs hdfs 594933 2019-02-15 01:13 /data/Guttenberg/pg1661.txt

-rw-r--r-- 3 hdfs hdfs 142384 2019-02-15 01:13 /data/Guttenberg/pg844.txt

Problem 3: Dice.java

We only have one task for this dataset, but it is relatively complex. We
want to compare the 11 books based on their word usage. For this partic-
ular exercise we choose a relatively straightforward and limited means of
comparison, but the overall architecture of your Hadoop program will allow
you to make such comparisons more complex in the future.

This is a multi-step problem, and is the only problem where, if you want

you are allowed to use multiple Java programs to solve. (This is because this
problem has a natural off-line/on-line computing components which can be
credibly separated into separate programs.) If you choose to use multiple
programs, Dice.java shall be your final program, and you can name your
other programs as you desire, and provide full instructions for compilation
and running in your README file.

3Sorry, I was shooting for ten, and overshot by one.

4

First, you shall discover, for each of the documents the top 100 most
frequent words.

Second, for each pair of documents, you shall compute their Dice index
based on the top 100 most frequent words.

Given two sets D1 = {w1, . . . , wn} and D2 = {v1, . . . , vm}, the Dice index
dice(D1,D2) is defined as follows:

dice(D1,D2) =
2|D1 ∩D2|

n+m

The Dice index of 1 means that both sets coincide, the Dice index of 0
means that the two sets share no common elements (in our case - words).

The ouput of Dice.java shall be a collection of triples: the names of two
documents (you can use file names) and the value of the Dice coefficient.
Each pair needs to be considered only once so if you have <Document1,

Document2> already reported, there is no need to report <Document2, Document1>.

You are allowed to hardcode the names of the documents (filenames) in
your program, as well as to use 100 (number of most frequent words) as a
constant.

Hints. You need to solve three subproblems here. The first one is to
compute the list of 100 most common non-stopwords. This is a texbook
example of a top-K problem solved on top of your standard word count
problem. The second problem is: given two top 100 lists, compute Dice
coefficient. This requires intersection operation. In turn, intersection can
be viewed as a special case of a join. One key constraint is that you are not
allowed to simply send all 100 words from each document into your Reducer
and compute that intersection. This wont work if you are computing the
Jaccard coefficient of two much larger sets. Instead, come up with an idea
for a reduce-side join, possibly followed by an aggregation to compute it. In
your computations, you are allowed to hardcode the use of 100 in the de-
nominator of the Jaccard coefficient. Your third problem is how to structure
the computation of the Jaccard coefficient for each pair of books. This is
more of a software architecture problem, but you are going to do developing
software that goes above and beyond a simple MapReduce job very often.

Student Performance Dataset

The Student Performance dataset, available as /data/StudentsPerformance.csv
has information about individual student performance on three standard as-
sessment tests: math, writing and reading comprehension. For each student,
their demographic information is made available.

The columns in the file are:

1. gender: male or female.

5

2. race/ethnicity: this information is presented in the form of Group
A, . . . Group D values.

3. parental level of education. This attribute has a variety of values.
We will not be using it in this lab.

4. lunch indicates whether the student receives a regular lunch or a dis-
counted/free lunch.

5. test preparation course is an indicator of whether the student took
a test prepartion course.

6. math score, reading score, writing score: the test scores reported
in this order.

Problem 4: StudentStats.java

Find mean test scores and standard deviations of test scores for male stu-
dents, female students, students in each racial category, students who receive
free or discounted lunch, students who do not receive free or discounted
lunch.

For each category of students, your output shall contain the name of the
category, and six numbers: three means and three standard deviations, in
the order: math score mean, math score standard deviation, reading score
mean, reading score standard deviation, writing score mean, writing score
standard deviation.

Hint. This is not a complex task. Your main challenge is to do it all
in a single MapReduce cycle. This means working on multiple grouping
operations in parallel in the same Map() and the same Reduce().

Problem 5: Correlations.java

Find the Pearson correlations between math and writing score for each cat-
egory of students from Program 4.

The Pearson Correlation coefficient formula is the same as you need to
apply for Program 2, so this is an example of a MapReduce pattern that
I want you to repeat and remember well. The setup is slightly different.
Basically, for each category of students (e.g., female students), you need to
determine the Pearson correlation coefficient between the math and writing
scores of of all the students belonging to the category. The output shall be
the name of the category followed by one number – the correlation coefficient
itself.

Hint. This problem should be solved using a combiner operation that
potentially is different than a reducer operation. The idea is that portions
of the Pearson correlation can be constructed in the combiner, and the the

6

reducer can then simply aggregate the combiner outputs. The second issue
is that Pearson correlation needs means of each column by category This is
something you have just computed in Program 4. You can use the output
of Program 4 as one of the input files to Program 5. This is a good place to
use Distributed Cache.

Submission

Submit your Java programs and all other files necessary to run your code.
Submit README file describing how to compile and run all your programs.
Submit Makefiles or compile-and-run bash scripts to compile and run your
programs from ambari-head. Submit a README file describing anything I
should know about your implementation.

All submitted files must contain your names on them.

Submit all your code in a single archive (zip or tar.gz).

Use handin to submit as follows:

$ handin dekhtyar lab06 <FILES>

Good Luck!

7

