
. .
Winter 2019 CSC/CPE 369: Database Systems Alexander Dekhtyar
. .

Lab 8: Spark

Due date: March 18 (Monday), 11:59pm.

Lab Assignment

Assignment Preparation

This is a pair programming lab. You can pair with anyone in the class. I
will admit one team of three people.

Overview

This lab consists of two parts. In Part 1 you will implement a number
of Spark computations to compute answers to database queries. Part 2
will have you use Spark to implement a machine learning algorithm: the
K-Nearest Neighbor classifier on the wine quality dataset.

The algorithms themselves, and their transformation to Spark will be
discussed in class.

Part 1: Database Queries

You will be working with a collection of four CSV files representing the
BAKERY database from CSC 365. This dataset records information about one
month of sales from a small bakery to a list of its dedicated customers. The
dataset captures the notions of a transaction (a single purchase) and market
baskets (each purchase may contain more than one item). The dataset
contains four files:

1. customers.csv - list of 20 customers of the bakery.

2. goods.csv - list of 50 items on the bakery’s menu.

1

3. receipts.csv - list of 1000 purchases made at the bakery during one
month period.

4. items.csv - list of actual goods purchases (for each receipt) from the
bakery.

All files are uploaded to /data/BAKERY/ directory on HDFS.

I am releasing the README file for this dataset. The README file contains
detailed descriptions of each column in each file.

With this data, write Spark code that computes answers to the following
questions.

1. (Simple) Find all chocolate-flavored items on the menu whose price
is under $5.00. For each item output the flavor, the name (food type)
of the item, and the price. Sort your output in descending order by
price.

2. (Simple) Find all customers who made a purchase on October 3,
2007. Report the name of the customer (first, last). Sort the output
in alphabetical order by the customer’s last name. Each customer
name must appear at most once.

3. (Moderate) Find all dates in the first half of October of 2007 (Octo-
ber 1 to October 15 inclusive) on which one customer made multiple
purchases. Report each date exactly once, output dates sorted in as-
cending order.

4. (Moderate) Find all customers who did not make a purchase between
October 14 and October 19, 2007 (inclusively). Report their first and
last names sorted alphabetically by last name.

5. (Simple) Find all days on which either ALMETA DOMKOWSKI made a
purchase, or someone purchased a Gongolais Cookie. Sort dates in
chronological order. Each date shall appear exactly once.

6. (Simple) Report the total amount of money spent by bakery cus-
tomers in October 2007 on Cookies.

7. (Moderate) Report all days on which more than ten tarts were pur-
chased, sorted in chronological order.

8. (Moderate) Find the customer(s) who spent the most on pastries in
October of 2007. Report first and last name.

9. (Moderate) Find the customers who never purchased an eclair (’Eclair’)
(in October of 2007). Report their first and last names in alphabetical
order by last name.

10. (Moderate) Find the most popular (by number of pastries sold) item.
Report the item (food, flavor).

2

11. (Difficult) For every customer who DID NOT make a purchase on
the day of the highest revenue, report the total number of purchases
(overall) the customer made and the last date of a purchase. Order
the output by the total amount of purchases.

12. (Difficult) Output the names of all customers who made multiple pur-
chases (more than one receipt) on the latest day in October on which
they made a purchase. Report names (first, last) of the customers and
the earliest day in October on which they made a purchase, sorted in
chronological order.

For each query above, create a separate python file queryX.py where
"X" is the query number (1 through 12). If you want to place your helper
functions into a separate package, feel free to create a file lab7Helper.py

with all necessary functions (but do not feel compelled to do it).

Each queryX.py must end with printing of the output.

Note: Problems labeled Simple cost 10 pints. Problems labeled Moder-
ate cost 15 points. Problems labeled Difficult cost 20 points. Your goal
for this part of the assignment is to collect 100 points. All points
beyond 100 will be extra credit (although with some diminishing returns).

Part 2: K-Nearest Neighbors

Your task is to implement a Spark version of a popular K-Nearest Neighbors
classifier for the wine quality data from /data/winequality-red-fixed.csv

file on HDFS. We use the quality column in the dataset as the category label
(there are six classes total for quality values 3, 4, 5, 6, 7, and 8).

We will dicuss the K-Nearest Neighbors algorithm and how to render it in
Spark in class. The specifications below concern your Lab deliverable.

Computing Pairwise Distances. Create a PySpark program distances.py

that produces, as output, a collection of pairwise distances between two rows
of data in the wine quality input dataset. The output shall be a collection
of rows that look as follows:

rowNumber1, rowNumber2, distance

where rowNumber1 and rowNumber2 are unique ids of two rows in the wine
quality dataset, and distance is the Eucledian distance between the vectors
in these two rows.

Note. The winequality-red-fixed.csv file does not have unique row
ids in it. It is your job to adjust your RDD with an extra column (key) that
stores the row Id.

3

Given two vectors, row1 = (x1, . . . , xn) and row2 = (y1, . . . , yn) the Eu-
cledian distance between them is computed as

distance(row1, row2) =

√

√

√

√

n
∑

i=1

(xi − yi)2.

The output of distances.py shall be a data file stored on HDFS.

KNN implementation. Create a PySpark program knn.py that takes as
input the value of k for the K Nearest Neighbors algorithm, and (optionally)
the location of the distance matrix for the wine dataset (you are allowed to
hardcode that location in your code, just specify this in your README file).

Your program shall perform an all-but-one K-Nearest Neighbor classifica-
tion of every data point in the wine dataset. (Please note, your program
will have to create an RDD out of the original winequality-red-fixed.csv
file, as part of the your solution).

The output of your program shall be as follows:

• a file knn-wines.out saves somewhere in your HDFS directory where
each row has the following format

rowId, predicted-quality, true-quality

Here, rowId is the unique id of a row from the winequality-red-fixed.csv
dataset, predicted-quality is the quality value predicted by the
KNN algorithm, and true-quality is the actual quality (the value
of the quality column from the original file).

• A printed confusion matrix that shows for each pair of predicted and
true quality values, how many rows were classified that way. The
confusion matrix does not need to be saved - it shall be a printed
output of your program in a readable form.

• The overall accuracy of the KNN method (i.e., the percentage of data
points correctly classified).

Submission

Submit all your Python programs, and a README file

Use handin to submit as follows:

$ handin dekhtyar lab08 <FILES>

Good Luck!

4

