CSC 369 Distributed Computing Alexander Dekhtyar.

Input Data Formats For Hadoop

Overview of Input Data Formats

Splits. Hadoop organizes input data files into splits. Each Hadoop file split
is a sequence of bytes from the original file.

The key issue with splits in Hadoop is that they are done without parsing
the input data. What this means is that when a split is created, Hadoop
does not attempt to determine if it is breaking any specific structures.

Because of this issue, parsing certain types of data is non-trivial.

Basic Input Data Formats org.apache.hadoop.mapreduce.lib.input
contains a number of built-in classes for input formats.

Class Input Type
FileInputFormat Generic file input
TextInputFormat Generic text file input

KeyValueTextInputFormat User-defined key-value pair records as input
FixedLengthInputFormat Fixed length records as input

NLineInputFormat Allows user control over #lines per mapper
SequenceFileInputFormat Input an instance of org.apache.hadoop.io.SequenceFile

Each type of input data format differs from others in the following ways:

e Split organization
e Record organization:

— Mapper input key type
— Mapper input value type

— Input record determination

The table of types for Mapper input keys and values is below. All input
types come from org.apache.hadoop.io (see below).

Input Data Format Input key type | Input value type

TextInputFormat LongWritable Text
KeyValueTextInputFormat | Text Text
FixedLengthInputFormat | LongWritable BytesWritable
NLineInputFormat LongWritable Text

Setting Input Formats. To set an input file format, include the following
into your code:

// to set the input file location
<Class>.addInputPath(job, new Path(<path>, <file>));

// to override the default input class
job.setInputFormatClass(<Class>.class);

replacing <Class> with the name of the appropriate input data format class.

Example: KeyValueTextInputFormat. To have input file ./test/data.csv
to be treated as a KeyValueTextInputFormat file:

// to set the input file location
KeyValueTextInputFormat.addInputPath(job, new Path("./test/", "data.csv"));

// to override the default input class
job.setInputFormatClass (KeyValueTextInputFormat.class);
TextInputFormat

Overview. Class org.apache.hadoop.mapreduce.lib.input.TextInputFormat
represents the basic text input. This is the default File Input Format class.

Records. The records of TextInputFormat files are individual lines
(split by newline or newline/carriage return characters).

e Key. The key for each record is the byte offset of the first byte of
the record in the file, starting with the offset of 0 for the first line in
the file.

e Value. The value is the text of the line rendered as a Text instance.

Special settings. This is the default class, no special settings are needed.
In fact, the statement

job.setInputFormatClass(TextInputFormat.class);

can be omitted from the code.

KeyValueTextInputFormat

Overview. Useclass org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat
when your data file has one record per line, with the first part of each record
being the key you want your map() function to use.

Records. Class KeyValueTextInputFormat treats each line of input file
as a single record, that, unlike for TextInputFormat records, contains both,
the key, and the value in it.

¢ Key-Value delimiter. A delimiter separating the key of the key-
value pair from the record needs to be specified. (Default separator:
tab, i.e.,
t).

e Key. The key is the part of the line before the key-value delimiter
represented as a Text instance.

e Value. The value is the part of the line between the key-value delim-
iter and the end of line.

Note: If the key-value delimiter is occurs more than once on a single line,
its first occurrence is used to separate key from value on the line.

Special settings. To set the key-value delimiter, use the following code:

Configuration conf = new Configuration();
conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", <DELIMITER>);
Job job = Job.getInstance(conf);

Here, <DELIMITER> is a String value specifying the key-value delimiter.

FixedLengthInputFormat

Overview. Class org.apache.hadoop.mapreduce.lib.input.FixedLengthInputFormat
breaks the contents of an input file into records of equal (fixed) size.

Records. The file is broken into records of equal size.
e Record size. Record size (length) [is controlled by a parameter that
must be set.

e Key. The key of each record is its byte offset in the file (starting with
0 for the first record).

e Value. The value is the [bytes in the file starting at the offset specified
in the key represented as an instance of BytesWritable class.

Special Settings. To set the record length, use the public static void
setRecordLength() method from the FixedLengthInputFormat class. The
method takes two parameters: the Configuration object for the Hadoop
MapReduce job, and the length of the record:

Configuration conf = new Configuration();
FixedLengthInputFormat.setRecordLength(conf, 5);
Job job = Job.getInstance(conf);

NLineInputFormat

Overview. org.apache.hadoop.mapreduce.lib.input.NLFileInputFormat
is a version of the default input format file that provides a simple control
mechanism for the size of each file split.

Note. File split sizes in Hadoop by default are equal to 128 Mb. This
makes processing big data tasks straightforward, but for tasks with small
input files, may cause significant inconvenience, because the work won’t be
distributed among the Hadoop worker nodes (if the input file size is less
than 128 Mb, only one split is created, and only one Mapper process runs).

NLFileInputFormat overcomes this issue by providing a simple default
input format class in which the user can control the size of the file split in
terms of the number of lines per split. This has the side effect of evening
the number of records in each split (rather than the number of bytes).

Records. NLineInputFormat uses the same approach to breaking files
into records as TextInputFormat does. Each line of the input file is a record
with the byte offset of the first character of the record being the key, and
the contents of the line being the record.

Special Settings. The parameter controlling the number of records per
split is mapreduce.input.lineinputformat.linespermap. The code to set
this parameter is

Configuration conf = new Configuration();
conf.setInt ("mapreduce.input.lineinputformat.linespermap", <Number>);
Job job = Job.getInstance(conf);

(alternatively, if the configuration is already set for the job variable above,
you can use

job.getConfiguration.setInt("mapreduce.input.lineinputformat.linespermap", <Number>);

Note: NLineInputFormat controls the number of splits for the Mapper
classes only. You can see the input partitioned into multiple splits during
your hadoop run. However, this class cannot control by itself the number of
reducers, so, at the end, the output will be the same as if you have simply
used TextInputFormat as input.

Output File Formats

org.apache.hadoop.mapreduce.lib.output package contains a number
output file formats for Hadoop.

Note. Unlike input file formats, most of the time, the default output class
TextOutputFormat will suffice.

Appendix: Hadoop Data Types for Keys and Val-
ues

Hadoop wraps the keys and values passed to map() and reduce () methods
of Mapper and Reducer classes into Writable containers.

The data types for keys and values are defined in
org.apache.hadoop.io

Below is a sample of org.apache.hadoop.io classes, and the values they

represent.
Base Class org.apache.hadoop.io class
long LongWritable
int IntWritable
short ShortWritable
boolean BooleanWritable
float FloatWritable
double DoubleWritable
byte ByteWritable
bytell BytesWritable
EnumSet<E> EnumSetWritable
Object ObjectWritable
String Text

To get base values from instances of the org.apache.hadoop. io classes we
can use the get () methods for all classes except BytesWritable (for which
the method is getBytes (), and Text, for which the method is toString()).

