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Linear regression chooses 3 to minimize

n

Z(yz — (,80 + Brxin + ...+ ﬁpmip))Z

=1
We took the derivatives, set them equal to O, and found that
B=(X"x)"'xTy.

Of course we do not actually compute (XTX)~1 butwe
compute B by solving the linear system:

(xXTx)8=Xx"Ty.

This is a system of p equations with p unknowns. What is the
complexity? Answer: O(p?).



Today

Efficient ways to fit linear regression to massive data sets where p
is large.
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Numerical Optimization

We want to find 8 that minimizes

n

L(B) =) (i — (Bo+ Brwin + - + Bywip))*.
i=1
Consider the following iterative approach:
@ Start with a random guess of 3. Call it 8(©).
® Move 3 inthe direction that will decrease L the most to get a
new guess 8.

® From BW, there will be a new direction that decreases L the
most. Move in that direction to get a new guess B8(2.

@ Repeat until it is no longer possible to decrease the value of L.
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Gradient Descent
How do we find the direction that will decrease L the most?

Remember from Calc IV that the gradient of L (VL) pointsin the
direction in which L is increasing the most.
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So we move in the negative gradient direction.
Bl = g™ —avL(8"),

where « (called the learning rate) determines how far we move in
that direction. This is called gradient descent (or steepest
descent).

What's the complexity of each iteration of gradient descent?
Answer: O(np).
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Problems with Gradient Descent

e Eachiterationis cheap, but how many iterations do we need
to converge?

» How do we choose the learning rate?
» Different starting points can give us different answers.
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Problems with Gradient Descent

However, the objective function L for linear regression is convex,
so it will only have different local minima. So gradient descent is
guaranteed to converge to the minimizer (provided you choose «

correctly).
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n

L(B) = (i — (Bo+ Brizri + - + Bypwpi))*.

i=1

Work out the gradient of L. Try to write your answer using linear
algebra notation.
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Implementing Gradient Descent for Linear
Regression

B+ = gk _ v L(B")
VL(B) = —2X"(y - XB)

In-Class Exercise

Open the notebook
Gradient Descent for Linear Regression.ipynb. Implement

the function 1m_gd.
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Streaming Data

The approach we described above is great for large static data, but
what if data is streaming?

As we get more data, the objective function changes:

n

L(B) = (yi — (Bo+ Brait + ... + Byrip))*.

i=1

How do we update the coefficients 3? (Note: Updates need to be
very efficient because the velocity of data may be high!)
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Main Idea

Write the gradient as
VL(B) = 2XT(.Y - Xp)

= Z 2(yi — (Bo + Brzin + ... + Bpxip) )X

= Z VLi(B)
=1

In other words, each observation has a contribution to the overall
gradient.
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Stochastic Gradient Descent

Move only in the direction of the gradient for the current
observation:

B+ = g — oV L;(B™)

V L; will be much noisier, but much less computationally intensive
to calculate. (It'sonly O(p).)



Implementing Gradient Descent for Linear
Regression

Bl = g — oV L;(B™)
VLi(B) = —2(yi — (Bo + Brwir + ... + Bpxip))

In-Class Exercise

In the notebook
Gradient Descent for Linear Regression.ipynb, implement

the function 1m_sgd.
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