
Data 401
Gradient Descent

Dennis Sun

October 12, 2016



1 Review

2 Gradient Descent

3 Stochastic Gradient Descent



1 Review

2 Gradient Descent

3 Stochastic Gradient Descent



Review of Linear Regression

• Linear regression choosesβ to minimize
n∑
i=1

(yi − (β0 + β1xi1 + ...+ βpxip))
2

• We took the derivatives, set them equal to 0, and found that
β̂ = (XTX)−1XTy.

• Of course we do not actually compute (XTX)−1, but we
compute β̂ by solving the linear system:

(XTX)β̂ = XTy.

• This is a system of p equations with p unknowns. What is the
complexity? Answer: O(p3).
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Today

Efficient ways to fit linear regression to massive data sets where p
is large.
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Numerical Optimization

Wewant to findβ that minimizes

L(β) =

n∑
i=1

(yi − (β0 + β1xi1 + ...+ βpxip))
2.

Consider the following iterative approach:
1 Start with a random guess ofβ. Call itβ(0).
2 Moveβ in the direction that will decreaseL the most to get a
new guessβ(1).

3 Fromβ(1), there will be a new direction that decreasesL the
most. Move in that direction to get a new guessβ(2).

4 Repeat until it is no longer possible to decrease the value ofL.
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Numerical Optimization



Gradient Descent
How dowe find the direction that will decreaseL the most?

Remember fromCalc IV that the gradient ofL (∇L) points in the
direction in whichL is increasing the most.

∇L(β) =


∂L
∂β1
∂L
∂β2...
∂L
∂βp

 .

So wemove in the negative gradient direction.
β(k+1) = β(k) − α∇L(β(k)),

where α (called the learning rate) determines how far wemove in
that direction. This is called gradient descent (or steepest
descent).
What’s the complexity of each iteration of gradient descent?
Answer: O(np).
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Problemswith Gradient Descent

• Each iteration is cheap, but howmany iterations do we need
to converge?

• How dowe choose the learning rate?
• Different starting points can give us different answers.
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However, the objective functionL for linear regression is convex,
so it will only have different local minima. So gradient descent is
guaranteed to converge to theminimizer (provided you choose α
correctly).
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The Gradient for Linear Regression

In-Class Exercise
The objective function for linear regression is

L(β) =

n∑
i=1

(yi − (β0 + β1x1i + ...+ βpxpi))
2.

Work out the gradient ofL. Try to write your answer using linear
algebra notation.

∇L(β) = −2XT (y −Xβ)
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Implementing Gradient Descent for Linear
Regression

β(k+1) = β(k) − α∇L(β(k))

∇L(β) = −2XT (y −Xβ)

In-Class Exercise
Open the notebook
Gradient Descent for Linear Regression.ipynb. Implement
the function lm_gd.
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Streaming Data

The approach we described above is great for large static data, but
what if data is streaming?

As we get more data, the objective function changes:

L(β) =
n∑
i=1

(yi − (β0 + β1xi1 + ...+ βpxip))
2.

How dowe update the coefficientsβ? (Note: Updates need to be
very efficient because the velocity of data may be high!)
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Main Idea

Write the gradient as
∇L(β) = 2XT (y −Xβ)

=
n∑
i=1

2(yi − (β0 + β1xi1 + ...+ βpxip))xi

=
n∑
i=1

∇Li(β).

In other words, each observation has a contribution to the overall
gradient.
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Stochastic Gradient Descent

Move only in the direction of the gradient for the current
observation:

β(i+1) = β(i) − α∇Li(β(i))

∇Li will be much noisier, but much less computationally intensive
to calculate. (It’s onlyO(p).)
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Implementing Gradient Descent for Linear
Regression

β(i+1) = β(i) − α∇Li(β(i))

∇Li(β) = −2(yi − (β0 + β1xi1 + ...+ βpxip))

In-Class Exercise
In the notebook
Gradient Descent for Linear Regression.ipynb, implement
the function lm_sgd.
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