Suffix Trees

Suffix trees form the backbone of many string-processing algorithms, including string matching and palindrome discovery.

Definition. Given a string S of length m in alphabet Σ, a suffix tree $T(S)$ is a rooted directed tree with the following properties:

- $T(S)$ has m leaves labeled $1, \ldots, m$.
- Each internal node other than the root node has at least two children.
- Each edge $e = (v, u)$ has a label $\text{label}(e)$, which is a non-empty substring of S.
- No two edges (v, u) and (v, w) can have labels that start with the same character.
- Let r, v_1, \ldots, v_k, i be the path in $T(S)$ from the root node r to the leaf node i. Then
 \[\text{label}(r, v_1)\text{label}(v_1, v_2)\ldots\text{label}(v_k, i) = S[i, \ldots m]. \]

Example. Figure 1 shows the suffix tree constructed for the string $S = \text{ATTAC}$.

Note. Suffix trees cannot be constructed if one suffix of S matches a prefix of another suffix in S (i.e., if, essentially, the last character in S occurs elsewhere in S). To rectify this, we use a special character $\$ \not\in \Sigma$ as the terminating character of all strings S we consider.

Terminology. The label of a path from root r of $T(S)$ to a node v (a.k.a., the path-label of v), denoted $\text{label}(v)$ is defined as

\[\text{label}(v) = \text{label}(r, v_1)\text{label}(v_1, v_2)\ldots\text{label}(v_k, v), \]

where r, v_1, \ldots, v_k, v is the path from r to v in $T(S)$.

The string-depth of a node v in $T(S)$ is $|\text{label}(v)|$: the length of the path-label of v.

1
String Matching Using Suffix Trees.

The following algorithm finds all matches of string P in a query string S.

1. Build $T(S)$.
2. Match P along a path in S.
 (a) If P is exhausted, then all leaves below the current position in the tree will contain the positions of occurrences of P in S.
 (b) If P cannot be matched, then P does not occur in S.

Example. Figure 2 shows a successful attempt to find a substring TT in string $S = \text{ATTAC}$, and an unsuccessful attempt to find a substring ATTC.

Analysis. We note the following:
• The matching path of P in $T(S)$ is unique (i.e., no two different paths in $T(S)$ starting from the root node share a prefix).

• If Σ is fixed, then each node can be traversed in constant time $O(|\Sigma|)$.

• Matching P in $T(S)$ takes $O(|P|)$ time.

Naïve Algorithm for Suffix Tree Construction

Suffix tree construction problem. Given a string $S = s_1 \ldots s_n \in \Sigma^*$, build a tree $T(S\$)$, where “$\$” $\not\in \Sigma$ is a special terminating character.

Algorithm. The algorithm constructs a sequence of trees N_1, \ldots, N_{n+1}, where $N_{n+1} = T(S\$$). The construction proceeds as described in the following inductive procedure:

1. N_1 has two nodes, r (root) and 1, and an edge $(r, 1)$ with $label(r, 1) = S\$.$

2. Let N_i be constructed. We construct N_{i+1} as follows. Starting at r (root node of N_i), traverse N_i matching characters $s_{i+1}s_{i+2}\ldots s_n\$ to the path label.

 • If some prefix $s_{i+1} \ldots s_{i+j}$ matches a path label in the middle of an edge label for some edge (u, v), then
 – Create a new node v'.
 – Delete edge (u, v). Insert edge (u, v') labelled with the prefix of $label(u, v)$ which matched the suffix of $s_{i+1} \ldots s_{i+j}$.
 – Insert edge (v', v) labeled with the remainder of $label(u, v)$.
 – Create a new node $i + 1$. Insert edge $(v', i + 1)$. Set $label(v', i + 1) = s_{i+j+1} \ldots s_n\$$.

 • If some prefix $s_{i+1} \ldots s_{i+j}$ matches a path-label of some node $v \in N_i$, then
 – Create new node $i + 1$.
 – Insert an edge $(v, i + 1)$. Set $label(i + 1) = s_{i+j+1} \ldots s_n\$.

Example. Figure 3 shows the steps of construction of $T(ATTAC\$$)$ using the naïve algorithm. On steps 3 and 4 of the construction, the longest match (“T” and “A” respectively) splits an edge label and leads to creation of internal nodes.

Analysis. Each step of the algorithm requires $O(n)$ operations. There are $n + 1$ steps, hence the naïve algorithm for suffix tree construction works in $O(n^2)$ time.

Linear-time Construction of Suffix Trees

We describe a linear-time algorithm proposed by Ukkonen[1].

3
Figure 3: Construction of the suffix tree for string \texttt{ATTAC$} using the naïve algorithm.

Figure 4: The suffix tree and the implicit suffix tree for string \texttt{ATTCAT}.

Implicit suffix trees. Given a string $S = s_1 \ldots s_n$, its *implicit suffix tree* is a tree constructed from the suffix tree $T(S\$)$ as follows:

1. Remove $\$ $from every edge label.
2. Remove any edge without a label.
3. Remove any node that has only one child.

Given a string S, $I(S)$ denotes its implicit suffix tree. $I_i(S)$ denotes the implicit suffix tree of the substring $s_1 \ldots s_i$ of S.

Example. Figure 4 shows the suffix tree and the implicit suffix tree for a string \texttt{ATTCAT}.
Note. The implicit suffix tree for S has fewer leaves than $T(S)$ iff at least one suffix of S is a prefix of another suffix of S.

Ukkonen’s algorithm for building implicit suffix trees. Given a string $S = s_1 \ldots s_n$, The algorithm builds a sequence of implicit suffix trees $I_1(S), \ldots I_n(S)$ as follows.

1. $I_1(S)$ contains two nodes, r (root) and 1 and and edge $(r, 1)$ labeled $\text{label}(r, 1) = s_1$.
2. Let $I_i(S)$ be constructed. $I_{i+1}(S)$ is constructed in a sequence of $i + 1$ extensions:
 - On extension $1 \leq j \leq i + 1$, find the path $s_j \ldots s_i$ in $I_i(S)$.
 - If needed (see below), extend the path by adding s_{i+1} to the last edge label.

Suffix extensions. Suffix extensions are performed using the following rules. Let $\beta = s_j \ldots s_i$ for extension step j of ith iteration of the algorithm. Suffix extension rules ensure that the suffix βs_{i+1} is found in the implicit suffix tree $I_{i+1}(S)$. Three cases are possible:

- **Rule 1.** In $I_i(S)$, β ends at a leaf node. Let (v, k) be the last edge of the path. Then we extend the label of (v, k):
 $$\text{label}_{i+1}(v, k) = \text{label}_i(v, k)s_{i+1}.$$

- **Rule 2.** In $I_i(S)$, there is at least one path extending β and no path extending β starts with s_{i+1}. Then,
 - Create a new leaf node $i + 1$.
 - If β stops at an internal node v, add an edge $(v, i + 1)$, label it with $\text{label}_{i+1}(v, i + 1) = s_{i+1}$.
 - If β stops in the middle of an edge label for some edge (v, u), then
 * create a new internal node w;
 * remove (v, u);
 * add edge (v, w) labeled with the part of β that was the prefix of $\text{label}(v, u)$;
 * add edge (w, u) labeled with the part of $\text{label}(v, u)$ that follows β.
 * add edge $(w, i + 1)$ labeled $\text{label}_{i+1}(w, i + 1) = s_{i+1}$.

- **Rule 3.** There is a path following β in $I_i(S)$ that starts with s_{i+1}. In this case, do nothing.

Example. The three extension rules are illustrated in Figure 5. Figure 5 shows the progression of implicit suffix trees I_1, I_2, I_3 and I_4 for string $S = \text{ATAC}$. Extension steps are marked as numeric labels near the paths to which they correspond.

Rule 1 is used to extend $I_1(S)$ to $I_2(S)$ on extension steps 1 and 2. **Rule 2** is used exactly once in the construction of $I_4(S)$ on extension step 3: at this point, we are trying to place the suffix AC into the tree, and this leads to a split on a path from root to node 1. **Rule 3** is used on extension step 3 when building $I_3(S)$ - suffix A is found in the tree, and no alterations are made.
Analysis. The key step of Ukkonen’s algorithm is building extensions on each extension step. There are $O(n^2)$ extension steps. Each step can naively take $O(n)$ to complete, hence a naive implementation of Ukkonen’s algorithm will have running time $O(n^3)$, which is worse than the direct naive construction of a suffix tree.

Efficient implementation of Ukkonen’s Algorithm.

Problem. Given $\beta = s_j \ldots s_i$ and $N_i(S)$, locate the ends of β in $N_i(S)$.

Naive discovery of β in $N_i(S)$ is what gives us the $O(n^3)$ algorithm.

Challenge. Speed up suffix discovery.

Speedup 1: Suffix links. Consider a string $x\alpha$ where $x \in \Sigma$ and $\alpha \in \Sigma^*$ (possibly empty). Let v be an internal node of some implicit suffix tree $I_i(S)$ and let $\text{label}(r, v) = x\alpha$. If there is another node $s(v) \neq v$ such that $\text{label}(r, s(v)) = \alpha$, then a suffix link is a pointer from $s(v)$ to s.

Lemma. Consider the process of building $I_{i+1}(S)$ from $I_i(S)$. Let new internal node v be added to $I_{i+1}(S)$ on extensions step j, and let $\text{label}(r, v) = x\alpha$. Then, either there exists an internal node u, such that $\text{label}(r, u) = \alpha$, or, on extension $j+1$ of the current phase, an internal node u, s.t., $\text{label}(r, u) = \alpha$ will be created.

Corollary. In Ukkonen’s algorithm, every newly created internal node will have a suffix link from it by the end of the next extension.

Corollary. In any $I_i(S)$, if some internal node v has path-label $x\alpha$, there exists a node $s(v)$ in $I_i(S)$ with path-label α.

First extension in an implicit suffix tree. Given $I_i(S)$, the first extension step of $I_{i+1}(S)$ extends $s_1 \ldots s_i$, which is a path to a leaf node in $I_i(S)$. We can store a pointer to this node in the root r (note: it will be the same node on every step phase $i = 1, \ldots, n$. Therefore, we can perform extension step $j = 1$ in constant time on each phase.
Using suffix links. We use the suffix links to speed up tree traversal during extension steps as follows:

1. Let \(i + 1 \) be the phase, and \(j \geq 2 \) be the extension step. At this point, we assume that we know where the string \(s_{j-1} \ldots s_i \) ends in \(I_i(S) \).

2. Find the first node \(v \) above the end of \(s_{j-1} \ldots s_i \) that either is the root \(r \), or has a suffix link from it. Let \(\gamma \) be the string between \(v \) and \(s_i \).

3. If \(v \) is NOT root, traverse suffix link from \(v \) to \(s(v) \). Walk down from \(s(v) \) following \(\gamma \).

4. If \(v = r \), follow \(s_j \ldots s_i \).

5. Use extension rules to get \(s_j \ldots s_i s_{i+1} \) is in the tree.

6. If used extension rule 2 and created a new internal node \(w \), then \(s(w) \) is the end node for the suffix link from \(w \). Create suffix link \((w, s(w))\).

Skip/count trick. On extension step \(j + 1 \) we start at \(s(v) \) and traverse the string \(\gamma \) down the tree. We want to make this traversal efficient.

Naïve traversal is \(O(|\gamma|) \). Let \(|\gamma| = g \) and let \(\gamma = b_1 \ldots b_g \).

First character of \(\gamma \) must appear at exactly one edge \((s(v), w)\) out of \(s(v) \). Let \(g' = |\text{label}(s(v), w)| \) be the number of characters on that edge. If \(g' \leq g \), then we can skip directly to \(w \), w/o traversing \(\gamma \) along the edge. From \(w \) we need to find \(b_{g'+1} \ldots b_k \). We repeat the same trick.

If \(g' > g \), then skip to character \(g \) on \(\text{label}(s(v), w) \).

Edge-label compression. All edge labels are substrings of \(S \). Instead of explicitly writing them out — it might take \(O(n^2) \) space (and thus require quadratic time to access) — we replace each edge label with a pair of numbers \(i, j \), such that the edge label is \(s_i \ldots s_j \) and \(i, j \) is the smallest pair of indexes for which it is true.

Rule 3 trick. Any phase \(i + 1 \) can be ended immediately after rule 3 is applied.

Final trick. Once a leaf node is created in some \(I_i(S) \), it will remain a leaf node in all followup \(I_k(S) \), \(k > i \).

On phase \(i + 1 \), when a leaf edge is created to be labeled with \(s_p \ldots s_{i+1} \) \((|p, i + 1|)\), replace \(i + 1 \) with some index \(e \) signifying "the current end". On each phase, set \(e \) to \(i + 1 \) once.

Single phase algorithm. The tricks above lead to the following single phase algorithm.

1. On phase \(i + 1 \):
 1. Increment \(e \) to \(i + 1 \). (this implements all extensions \(1 \ldots j_i \).)
 2. Explicitly compute extensions starting at \(j_i + 1 \) until reaching extension \(j^* \) where rule 3 applies, or until all extensions are done.
 3. Set \(j_{i+1} \) to \(j^* - 1 \) for the next phase.
Creating the true suffix tree. We can construct $T(S\$)$ from $I_n(S)$ by adding $\$\$ to the end of S and extending $I_n(S)$ to $I_{n+1}(S\$)$.

References