Longest Common Subsequence

Subsequence. Given a string $S = s_1 s_2 \ldots s_n$, a subsequence of S is any string $P = p_1 \ldots p_k$, such that:

1. For all $1 \leq i \leq k$, $p_i = s_j$ for some $j > 0$;
2. If p_i is s_j and p_{i+1} is s_l, then $l > j$.

Informally, a subsequence P of string S can be obtained by removing zero or more characters from S and preserving the order of the characters not removed.

Example. Let $S = ATCATTCG$. Then, ATC, AAT, $ATATG$ and $CCCG$ are all subsequences of S, while AAA, $ATTA$ and CCT are not.

Longest Common Subsequence (LCS) Problem. The Longest Common Subsequence (LCS) problem is specified as follows: given two strings S and T, find the longest string P which is a substring for both S and T.

Brute-Force Solution.

A naïve algorithm for solving LCS is:

1. Enumerate all possible subsequences of S.
2. For each subsequence of S check if it is also a subsequence of T.
3. Keep track of the longest common subsequence found and its length.

Analysis. A string $S = s_1 \ldots s_n$ has 2^n possible subsequences (each subsequence is essentially a choice of which characters are in and which characters are out). Some of these subsequences are not unique, but in a brute-force algorithm, there is no way to know that ahead of time. Checking if a string $T = t_1 \ldots t_m$ contains a subsequence $P = p_1 \ldots p_k$ can be done in $O(m + k) = O(m)$ (if $k > m$, the answer is an automatic "no") time. Thus, the overall complexity of the brute-force algorithm is $O(m2^n)$.

1
Characterization of a Longest Common Subsequence

To help us develop an efficient algorithm for LCS, we need to be able to understand what a longest common subsequence of two sequences looks like. The following theorem provides the key idea for an efficient algorithm:

Theorem. Let \(S = s_1 \ldots s_n \) and \(T = t_1 \ldots t_m \) be two strings and let \(P = p_1 \ldots p_k \) be their longest common subsequence. Then:

1. If \(s_n = t_m \), then \(p_1 \ldots p_k \) is the longest common subsequence of \(s_1 \ldots s_{n-1} \) and \(t_1 \ldots t_{m-1} \);
2. If \(s_n \neq t_m \) and \(p_k \neq s_n \), then \(P \) is the longest common subsequence of \(s_1 \ldots s_{n-1} \) and \(T \);
3. If \(s_n \neq t_m \) and \(p_k \neq t_m \), then \(P \) is the longest common subsequence of \(S \) and \(t_1 \ldots t_{m-1} \).

Given \(S = s_1 \ldots s_n \) and \(T = t_1 \ldots t_m \), let \(c[i,j] \) (for \(1 \leq i \leq n \) and \(1 \leq j \leq m \)) represent the length of the maximal longest subsequence of \(s_1 \ldots s_i \) and \(t_1 \ldots t_j \).

For the sake of consistency we set \(c[0,0] = 0 \).

The theorem suggests the following approach to determining the length of the LCS of \(S \) and \(T \):

- Build the matrix \(c[i,j] \) from \(c[0,0] \) all the way to \(c[n,m] \). \(c[n,m] \) will contain the length of the LCS of \(S \) and \(T \).
- Make sure that the construction of the matrix allows for a fast determination of the actual LCS.

Building the matrix \(c[i,j] \). Using the theorem above, we can derive the following about \(c[i,j] \):

- If \(s_i = t_j \) then \(c[i,j] = c[i-1,j-1] + 1 \).

 If the two last characters of the substrings agree, then the LCS extends to include this character.

- If \(s_i \neq t_j \) then \(c[i,j] = \max(c[i,j-1], c[i-1,j]) \).

 Essentially, if the last characters of the substring differ, then the LCS of \(s_1 \ldots s_i \) and \(t_1 \ldots t_j \) is also the LCS of one of the two strings and the other string without the last character.

We represent this formally as the following recurrence relation:

\[
c[i,j] = \begin{cases}
0 & \text{if } i = j = 0; \\
\max(c[i-1,j-1], c[i,j-1], c[i-1,j]) & \text{if } i, j > 0; s_i \neq t_j; \\
c[i-1,j] + 1 & \text{if } i, j > 0; s_i = t_j;
\end{cases}
\]

Essentially, \(c[i,j] \) can be determined if we know the values in the following cells: \(c[i-1,j-1], c[i,j-1], \) and \(c[i-1,j] \). We can set \(c[0,j] = 0 \) and \(c[i,0] = 0 \) for all \(1 \leq j \leq m \) and \(1 \leq i \leq n \). This makes it possible to compute \(c[1,1] \), which, in turn, makes it possible to compute \(c[1,2] \) and \(c[2,1] \), and so on.
"Remembering" the LCS. On each step \((i, j)\) of computation of \(c[i, j]\), we can determine which of the three cells \(c[i-1, j-1]\) (diagonally above and to the left), \(c[i, j-1]\) (to the left) or \(c[i-1, j]\) (above) is the one whose value is used in computing \(c[i, j]\).

We create a table \(u[i,j]\). In cell \(s[i,j]\) we store the "pointer" to the cell from which \(c[i,j]\) was constructed. We use symbols ←, ↑ and \(\) to denote the following cases:

<table>
<thead>
<tr>
<th>(u[i,j]) Symbol</th>
<th>(s_i) vs. (t_j)</th>
<th>Table condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>(s_i = t_j)</td>
<td>N/A</td>
</tr>
<tr>
<td>↑</td>
<td>(s_i \neq t_j)</td>
<td>(c[i-1, j] \geq c[i, j-1])</td>
</tr>
<tr>
<td>←</td>
<td>(s_i \neq t_j)</td>
<td>(c[i, j-1] > c[i-1, j])</td>
</tr>
</tbody>
</table>

Proposition. There is a path from \(s[n,m]\) to \(s[0,0]\). The LCS of \(S = s_1 \ldots s_n\) and \(T = t_1 \ldots t_m\), given a constructed matrix \(u[i,j]\) can be found by combining all \(s_i\) characters for all locations \([i,j]\), where \(u[i,j] = \)

Dynamic Programming Algorithm for LCS

To find the LCS of two strings, we need to construct the two matrices: \(c[i,j]\) and \(s[i,j]\). The following iterative version of the algorithm can do it.

```
Algorithm LCS\((S = s_1 \ldots s_n, T = t_1 \ldots t_m)\)
begin
    declare \(c[0..n, 0..m]\); declare \(u[0..n, 0..m]\);
    for \(i = 0\) to \(n\) do
        \(c[i, 0] := 0\);
    end for
    for \(j = 1\) to \(m\) do
        \(c[0, j] := 0\);
    end for
    for \(i = 1\) to \(n\) do
        for \(j = 1\) to \(m\) do
            if \(s_i = t_j\) then
                \(c[i, j] := c[i-1, j-1] + 1\);
                \(u[i, j] := \)
            else
                if \(c[i-1, j] \geq c[i, j-1]\) then
                    \(c[i, j] := c[i-1, j]\);
                    \(u[i, j] := ↑\);
                else
                    \(c[i, j] := c[i, j-1]\);
                    \(u[i, j] := ←\);
                end if
            end if
        end for
    end for
    LCSLength := \(c[n, m]\);
    LCS := LCSRecover\((S, T, u[])\);
    return \((LCS, LCSLength)\);
end
```
The algorithm LCSRecover takes as input two strings, S and T\(^1\) and the matrix $u[i, j]$ that encodes how $c[i, j]$ was filled, and returns back the LCS of S and T. The algorithm works as follows (in the algorithm below, $+$ on string values is a concatenation operation).

```
Algorithm LCSRecover($S = s_1 \ldots s_n$, $T = t_1 \ldots t_n$, $u[0..n, 0..m]$)
begin
  $P := "\"$;
  $i := n$;
  $j := m$;
  $P := s_i + P$;
  while $i > 0$ and $j > 0$ do
    if $u[i, j] = \backslash$ then
      $P := s_i + P$;
      $i := i - 1$;
      $j := j - 1$;
    else
      if $u[i, j] = \leftarrow$ then
        $j := j - 1$;
      else
        // $u[i, j] = \uparrow$
        $i := i - 1$;
      end if
    end if
  end while
return $P$;
end
```

Analysis. Algorithm LCS contains a double nested loop that iterates $n \cdot m$ times. Each loop iteration completes in $O(1)$.

On each step of the main loop of the algorithm LCSRecover either i or j gets decreased (and on some steps, both i and j are decreased). This means that the main loop of LCSRecover runs no more than $m + n$ times, and the algorithm itself has $O(m + n)$ runtime complexity.

As a result, algorithm LCS has $O(nm) + O(n + m) = O(nm)$ runtime complexity.

Edit Distance

Edit Distance. Given two strings $S = s_1 \ldots s_n$ and $T = t_1 \ldots t_m$, the edit distance between S and T is defined as the smallest number of atomic edit operations necessary to transform S into T. The atomic edit operations are

- **Character insertion.** An insertion of a single character from the alphabet into any position in the string.
- **Character deletion.** A removal of any character from the string.
- **Character replacement.** A replacement of any character in the string with another character from the alphabet.

\(^1\)It actually needs only one string, since it returns the common sequence.
Example. Given a word "cat", the following words have an edit distance of 1 from it:

- "at", obtained from "cat" by deleting its first character:
 \[
 \begin{align*}
 \text{cat} \\
 \text{X} | |
 \text{ _at}
 \end{align*}
 \]

- "cast", obtained from "cat" by inserting a character "s" into the third position of the string:
 \[
 \begin{align*}
 \text{ca_t} \\
 | | \text{X} | \\
 \text{cast}
 \end{align*}
 \]

- "vat", obtained from "cat" by replacing the first character with "v":
 \[
 \begin{align*}
 \text{cat} \\
 \text{X} | | \\
 \text{vat}
 \end{align*}
 \]

Computing the Edit Distance. We want to develop a dynamic programming algorithm for computing the edit distance. In preparation for this, we will consider using a data structure similar to the one we used when solving the LCS problem.

Let \(c[i, j] \) be the edit distance between the prefixes \(S_i = s_1 \ldots s_i \) and \(T_j = t_1 \ldots t_j \) of the strings \(S \) and \(T \). Our algorithm will construct the table \(c[i, j] \). When completed, \(c[n, m] \) will contain the edit distance between \(S \) and \(T \).

The construction of \(c[i, j] \) is guided by the following observations:

- \(c[0, 0] = 0 \). For the sake of consistency, \(S_0 \) and \(T_0 \) are empty strings. The edit distance between two empty strings is 0.
- \(c[0, j] = j \) for all \(1 \leq j \leq m \). The edit distance between an empty string and any non-empty string of length \(j \) is \(j \): the string can be constructed via \(j \) consecutive insertions.
- \(c[i, 0] = i \): see above (the empty string is constructed from \(s_1 \ldots s_i \) via \(i \) consecutive deletions).
- If \(s_i = t_j \), then \(c[i, j] = c[i - 1, j - 1] \). If the last characters of the two prefixes coincide, then the edit distance between them is the same as the edit distance between the prefixes without the last characters.
- If \(s_i \neq t_j \), then an atomic edit is needed to match the last characters of the strings \(S_i \) and \(T_j \). We must select one of the three possible atomic edits (insertion, deletion, or replacement). When selecting which one to use, we basically are reducing computing the edit distance between \(S_i \) and \(T_j \) to:
1. computing the edit distance between S_{i-1} and T_{j-1} if replacement is chosen.
2. computing the edit distance between S_{i-1} and T_j if deletion is chosen.
3. computing the edit distance between S_i and T_{j-1} if insertion is chosen.

These insights can be properly encoded as follows:

$$c[i, j] = \begin{cases}
0 & \text{if } i = j = 0 \\
i & \text{if } j = 0 \\
j & \text{if } i = 0 \\
c[i-1, j-1] & \text{if } i, j \geq 1 \text{ and } s_i = t_j \\
\min(c[i-1, j-1], c[i-1, j], c[i, j-1]) + 1 & \text{if } i, j \geq 1 \text{ and } s_i \neq t_j
\end{cases}$$

Algorithm for Edit Distance Computation

Using the formula derived above, we can write the following algorithm for computing the table $c[i, j]$. The algorithm returns $c[n, m]$, which contains the edit distance between the input strings S and T.

```
Algorithm EditDistance(S = s_1 \ldots s_n, T = t_1 \ldots t_m)
begin
    declare c[0..n, 0..m];
    for i = 0 to n do
        c[i, 0] := 0;
    end for
    for j = 1 to m do
        c[0, j] := 0;
    end for
    for i = 1 to n do
        for j = 1 to m do
            if $s_i = t_j$ then
                c[i, j] := c[i-1, j-1];
            else
                c[i, j] := min(c[i-1, j-1], c[i, j-1], c[i-1, j]) + 1;
            end if
        end for
    end for
    return c[n, m];
end
```

Analysis. The double nested loop executes $n \cdot m$ times. Each iteration runs in $O(1)$. Therefore, the algorithmic complexity of the `EditDistance` algorithm is $O(nm)$.

6