(Rapid) Local Sequence Alignment

BLAST

BLAST: Basic Local Alignment Search Tool

BLAST is a family of rapid approximate local alignment algorithms[2]. BLAST is usually used to match a single DNA sequence S to a database $D = \{D_1, \ldots, D_N\}$ of DNA sequences.

Different variants of BLAST produce alignments for S and D represented in either an alphabet of nucleotides or an alphabet of amino acids (in fact, S and D may be in different alphabets!).

BLAST outputs two things:

- Good alignments between the query string S and strings from D;
- A p-value: the estimate of probability that the reported alignment can occur by chance.

The output of BLAST is usually sorted in ascending order by p-value (i.e., the lower the probability of a chance match, the better the local alignment is).

BLAST in a Nutshell

BLAST consists of three key procedures:

1. Rapid search for seed matches. On this stage, for each string $D_i \in D$, any locations that can have a "good" local match are rapidly identified. (*the specifics of this part is one of two things what makes BLAST different from other methods*).

2. Completion of local matches. Seed matches are extended to form local alignments. (*Different variations of BLAST have used different strategies for extending seed matches.*).

3. Estimation of p-values. For each local alignment, the probability that it may occur by chance is estimated. The produced matches are sorted in ascending order by the p-value. (*This is the second "specialty" of BLAST*).
Rapid Search for Seed Matches

Inputs. The problem involves the following inputs:

- alphabet $\Sigma = \{a_1, \ldots, a_M\}$;
- string $S = s_1 \ldots s_n$ called query string;
- string $T = t_1 \ldots t_m$ called database string;
- substitution matrix $\text{Score} : \Sigma \times \Sigma \rightarrow \mathbb{R}$;
- value τ, a similarity threshold, for seed alignments;
- an integer $k << \min(m, n)$, the length of the seed alignments.

Seed alignments. A pair of substrings $S_i = s_i \ldots s_{i+k-1}$ and $T_j = t_j \ldots t_{j+k-1}$ of length k is called a seed alignment iff

$$\text{Score}(S_i, T_j) = \sum_{l=0}^{k-1} \text{Score}[s_{i+l}, t_{j+l}] \geq \tau.$$

Problem: given the inputs above, find all pairs (i, j), such that (S_i, T_j) is a seed alignment. Do it fast!

Idea. Σ is a constant-length alphabet. In BLAST, k - the length of a seed alignment is a constant.

- For $\Sigma = \{A, T, C, G\}$ (alphabet of nucleotides), k is usually set to be in the range between 9 and 12 (a common value is 11).
- For Σ = the amino acid alphabet, $k = 3$.

BLAST uses the following key observations:

Observation 1: The number of all possible strings of size k in alphabet Σ, $|\Sigma|^k = M^k$ is a constant!

Observation 2: For each k-tuple $V = v_1 \ldots v_k$, the set of all k-tuples W_1, \ldots, W_s, such that

$$\text{Score}[V, W_i] \geq \tau$$

can be precomputed in advance in constant time!

Note: In fact, given k, BLAST precomputes the matrix Score_k of similarity scores between all pairs of k-tuples from $|\Sigma|$:

$$\text{Score}_k : \Sigma^k \times \Sigma^k \rightarrow \mathbb{R},$$

such that

$$\text{Score}_k[v_1 \ldots v_k, w_1 \ldots w_k] = \sum_{i=1}^{k} \text{Score}[v_i, w_i].$$

Then, based on the input value of τ, for each k-tuple V, BLAST computes the list $\text{Neighbors}(V)$ of all k-tuples W_1, \ldots, W_s, such that $\text{Score}_k[V, W_i] \geq \tau$.

Rapid Search Procedure. String $S = s_1 \ldots s_n$ has $n - k + 1$ k-tuples:

\[S_1 = s_1 \ldots s_{k-1} \]
\[S_2 = s_2 \ldots s_k \]
\[\vdots \]
\[S_{n-k+1} = s_{n-k+1} \ldots s_n \]

The rapid seed match search proceeds as follows:

1. For each S_i, retrieve $\text{Neighbors}(S_i)$.
2. Construct set $\text{Neighbors}(S) = \bigcup_{i=1}^{n-k+1} \text{Neighbors}(S_i)$.
3. For each string $V \in \text{Neighbors}(S)$, search for all occurrences of V in T.
4. Report a seed match between each S_i, such that $V \in \text{Neighbors}(S_i)$ and each T_j, such that $T_j = V$.

Why this works. Step 3 in the procedure above is a repeated search for exact matches between a k-tuple V and substrings of T. This can be done in time linear in m (length of T). Because the size of $\text{Neighbors}(S)$ is constant (it is less than $|\Sigma|^k$), Step 3 takes $O(m)$ time.

In practice, the rapid matches can be done in a number of ways:

- **Suffix trees.** A suffix tree for T can be precomputed. If k is known in advance, a traversal of the suffix tree can be used to label all internal nodes with node-paths of size k (or the next closest size) with the list of leaf nodes in the subtree.

 This suffix tree can be used to efficiently produce the list of seed matches, when searches for k-tuples from $\text{Neighbors}(S)$.

- **Indexing.** An index of k-tuple occurrences in T can be precomputed in advance and stored in an easy-to-access structure - e.g., in a hashmap. Given a k-tuple V from $\text{Neighbors}(S)$, the list of all its occurrences is retrieved in $O(1)$ time from the index structure.

- **Aho-Corasick algorithm.** Aho-Corasick algorithm\cite{1} solves the problem of searching for a set $V = \{V_1, \ldots, V_s\}$ of exact matches in a string T in time $O(n + m + z)$ where, n is the length of all strings from V, m is the length of T and z is the total number of matches found.

 The algorithm works by efficiently representing the collection of strings V as a keyword tree with backlinks the provide for efficient navigation when mismatches are found.

 The algorithm itself uses T to traverse the keyword tree for V. Each time a match is found, the keyword tree is navigated following a tree path. Each time, there is a mismatch, a sequence of fail jumps occurs.

 Aho-Corasick algorithm can be used to match any string T and the keyword tree constructed from the set $\text{Neighbors}(S)$.

By the numbers. What does it take to precompute the necessary structures?

\cite{1}Although it can be a rather large number.
Amino Acid alphabet. For the alphabet of amino acids we have:

- $|\Sigma| = 21$ (20 amino acids plus the stop codon).
- $k = 3$. This is the usual length used in BLAST.
- Substitution matrices used. BLOSUM62 is typically used. Other matrices in the BLOSUM family can be used. PAM family is used but not as commonly.
- Total number of combinations: $21^3 = 9261$.
- Size of the $Score_k$ matrix: $9261 \cdot 9261 = 85,766,121$ (85+ million).

Nucleotide alphabet. Things are a bit more "interesting":

- $|\Sigma| = 4$.
- $k \in \{9, 10, 11, 12\}$. Usualy value is $k = 11$.
- Substitution matrices used. Usually, $Score[X, X] = 5$, $Score = [X, Y] = -4$ for $X \neq Y$ is used.
- Total number of combinations: $4^11 = 2^22 = 4,194,304$ (over four million).
- Size of $Score_k$ matrix: $4^11 \cdot 4^11 = 2^44 = 17,592,186,044,416$ (over 17.5 trillion).

Completion of Local Matches

Step 2 of BLAST. Once seed matches are found, each of them needs to be extended to the best/longest possible match.

Different BLAST versions differ on how this step is handled. In the original BLAST algorithm[2], the process of extension was as follows:

1. For each seed match (i, j) reported on Step 1 of BLAST:
 - extend it in both directions for as long as the score of the new match is above the threshold τ.
 - stop, when the match cannot be extended on either side without its score falling below τ.
 - Report the computed match.

Variants. The origial version did not create local alignments with gaps. Subsequent versions of BLAST improved on this process in a number of ways:

- Gapped alignments. When extending the seed matches use a substitution matrix and indel score δ to score the alignments.
- Filter out seed matches. Only extend seed matches which show up in pairs on the same diagonal within a given number A of positions. This variant filtered out a large number of seed matches and improved the performance of BLAST.
Computing \(p \)-values of Alignments

Poisson distribution. A discrete random variable \(X \) has Poisson distribution with the mean (expected) value \(\lambda \) if the probability \(P(X = k) \) is

\[
P(X = k) = \frac{\lambda^k \cdot e^{-\lambda}}{k!}
\]

Intuition. Consider a certain, low-probability event \(\alpha \) that can occur with probability \(p \) at each moment of time. Consider a sequence of \(n \) independent trials for \(\alpha \). Let \(X \) be a discrete random variable that counts, how many times \(\alpha \) occurs. When \(p \) is reasonable and \(n \) is relatively small, the probability that \(\alpha \) occurs exactly \(k \leq n \) times can be described exactly using the binomial distribution:

\[
P(X = k) = p^k (1-p)^{n-k}.
\]

However, when \(p \) is very small, but \(n \) is very large, binomial distribution is not convenient to use. Poisson distribution is an approximation of the binomial distribution in such a situation.

Given \(n \) trials, the expected number of times \(\alpha \) occurs is \(np \). If \(n \) is very large and \(p \) is very small, \(np \) may be a mid-range number. Variable \(X \) will have Poisson distribution with the expected value \(\lambda = np \).

Match by chance. Consider a query string \(S \) and a database string \(T \), for which BLAST returns a local alignment with a score \(\tau' \geq \tau \). In general, two DNA sequences have a good local alignment if they are related and/or serve similar purposes. So, what is the probability that this local alignment of \(S \) and \(T \) occurred by chance?

Simple example. Let \((i, j)\) be a pair of random positions in \(S \) and \(T \). Let \(p \) be the probability that two letters occurring at random positions of two strings match\(^2\).

An exact match of length \(k \) starting at position \(i \) in \(S \) and \(j \) in \(T \), then has the following probability of happening by random chance:

\[
p' = (1-p)p^k.
\]

(Here, \(1-p \) is responsible for the match starting at \(s_i \) and \(t_j \). This means that \(s_{i-1} \neq t_{j-1} \), which has the probability of \(1-p \)).

There are \(nm \) possible alignments of \(S \) and \(T \). Therefore, the expected number of random alignments of two strings of length \(k \) in \(S \) and \(T \) is

\[
\lambda = nm(1-p)p^k.
\]

The number of random alignments is a random variable with Poisson distribution with the expected value of \(\lambda \).

\(^2\)For the nucleotide alphabet this probability, under the assumption of uniform distribution of nucleotides in the DNA strings is \(p = \frac{1}{4^k} = \frac{1}{16^k} \). For the alphabet of amino acids, this probability is \(p = \frac{1}{21^k} = \frac{1}{441^k} \).
Altschul-Dembo-Karlin statistics. In BLAST, the match between two sub-strings does not have to be exact, in order to qualify for a good local alignment, so the math is a bit more complex. The Altschul-Dembo-Karlin statistic estimates the expected number of such matches in a pair of strings $S = s_1 \ldots s_n$ and $T = t_1 \ldots t_m$ as

$$E(\tau) = K n m e^{-\lambda \tau},$$

where:

- K is constant.
- τ is the similarity threshold.
- λ is the positive root of the following equation:

$$\sum_{s \in \Sigma} \sum_{t \in \Sigma} p_s \cdot p_t \cdot e^{\lambda \cdot \text{Score}(s,t)} = 1.$$

Here p_s and p_t are the frequencies of characters s and t.

The probability that there is a match of a score greater than τ between two "random" subsequences of S and T is

$$P = 1 - e^{E(\tau)}.$$

From these statistics, the p-values for each alignment are computed.

References
