Homework 2: Final Exam Preparation

Due: Final Exam day.

Problem 1: Edit Distance

For each pair of words from the list below, determine the edit distance. (Recall, the edit distance is the smallest total number of insertions, deletions and replacements needed to turn one word into another.) Show the appropriate alignment between each pair of words (i.e., the alignment that produces the computed edit distance.) Show all work (i.e., construct the edit distance table).

1. Nucleotide Alphabet.
 - ATTGCTA
 - GCTATG
 - ATGCCTA
 - CATGCA

2. Amino Acid Alphabet
 - WALLS
 - WAIL
 - SAILS
 - STALLS

Global Alignment via Dynamic programming

For each pair of strings below, use Nudelman-Wensch algorithm to produce the best global alignment. In each case, produce the alignment table, draw the best global alignment, and supply the cost of the alignment. The substitution matrix(ces) to use and the indel penalty are specified for each case below.

1. Nucleotide alphabet. Substitution matrix: \(\sigma(X, X) = 5, \sigma(X, Y) = -4 \), if \(X \neq Y \). Indel penalty: \(\delta_1 = -3; \delta_2 = -5 \).
 - CATTAGGTA
 - ATCATAGATA
2. Nucleotide alphabet. Substitution matrix: \(\sigma(X, X) = 5, \sigma(X, Y) = -4, \) if \(X \neq Y. \) Indel penalty: \(\delta_1 = -3; \delta_2 = -5. \)

\[
\text{ATGAATGCGCTAG} \\
\text{ATGATCCTGA}
\]

3. Amino Acid alphabet. Substitution matrices: \textbf{PAM250} and \textbf{BLOSUM62}. Indel Penalties: \(\delta_1 = -2; \delta_2 = -4; \delta_3 = -6. \)

\[
\text{FEARTHEACID} \\
\text{EARTHHEADREST}
\]

4. Amino Acid alphabet. Substitution matrices: \textbf{PAM250} and \textbf{BLOSUM62}. Indel Penalties: \(\delta_1 = -2; \delta_2 = -4; \delta_3 = -6. \)

\[
\text{SPEARED} \\
\text{PEARDEAD}
\]

5. Amino Acid alphabet. Substitution matrices: \textbf{PAM250} and \textbf{BLOSUM62}. Indel Penalties: \(\delta_1 = -2; \delta_2 = -4; \delta_3 = -6. \)

\[
\text{LIKEWIND} \\
\text{LINKWILD}
\]

Problem 3: Local Alignment: dynamic programming

Using the Smith-Waterman algorithm, find the best local alignment for each of the pairs of strings (and combinations of substitution matrices and indel penalties) from Problem 2. Draw the score matrices, the best local alignments and report the alignment scores.

Additionally, find the best local alignments for the following pairs of strings.

1. Nucleotide alphabet. Substitution matrix: \(\sigma(X, X) = 5, \sigma(X, Y) = -4, \) if \(X \neq Y. \) Indel penalty: \(\delta_1 = -3; \delta_2 = -5. \)

\[
\text{ATTAGCCTGTGAT} \\
\text{GGCCTGTCCC}
\]

2. Nucleotide alphabet. Substitution matrix: \(\sigma(X, X) = 5, \sigma(X, Y) = -4, \) if \(X \neq Y. \) Indel penalty: \(\delta_1 = -3; \delta_2 = -5. \)

\[
\text{TAGGACATTCAACTTT} \\
\text{AAACATCAACGG}
\]

3. Nucleotide alphabet. Substitution matrix: \(\sigma(X, X) = 5, \sigma(X, Y) = -4, \) if \(X \neq Y. \) Indel penalty: \(\delta_1 = -3; \delta_2 = -5. \)

\[
\text{TAATAGTACTATGCATGTA} \\
\text{CCAATACCCGCAAATGTC}
\]
4. Amino Acid alphabet. Substitution matrices: PAM250 and BLOSUM62. Indel Penalties: $\delta_1 = -2$; $\delta_2 = -4$; $\delta_3 = -6$.

Problem 4: Similarity matrix computation

For the following lists of strings, compute the distance matrix based on the global alignment scores between each pair of the strings. The substitution matrices and the indel penalties are specified for each case.

1. Nucleotide alphabet. Substitution matrix: $\sigma(X, X) = 5$, $\sigma(X, Y) = -4$, if $X \neq Y$. Indel penalty: $\delta_1 = -4$.

 S1: CAGTCATG
 S2: CATATG
 S3: ATCATCAG
 S4: TACTATATG
 S5: TATTATAG
 S6: CATATGGG

 S1: WINGS
 S2: SINGS
 S3: SIGN
 S4: ALIGN
 S5: HILL
 S6: HILLS
 S7: SHILL

Problem 5: Hierarchical Clustering

Use the agglomerative hierarchical clustering algorithm to construct the dendrogram for each of the distance matrices computed in Problem 4. For each matrix use single link, complete link and average link distance measures for recomputing intercluster distances. For each matrix, compare the three dendrograms obtained and describe any differences found (if there are any differences).

In addition, perform the same tasks for the following distance matrix (note, in this case, larger means less similar):
Problem 6: Local Alignment. FASTA

For the pairs of strings below (first string the database string, second - the query string), construct the dot plots for matching the substrings of length 3 (i.e., perform the first step of the FASTA algorithm). Show which substrings of length 3 are found in which string (and where), and draw the dot plot.

1. Nucleotide alphabet.
 - Query: CATGCATGC
 - DB: ATCATGCAGGCTCCATGCAAT

2. Amino Acid alphabet.
 - Query: SKILLS
 - DB: IKILLILLSANDSAIL

Problem 7: Local Alignment: FASTA

For each ungapped local alignment shown below, produce the score using BLOSUM62 substitution matrix.

1. DARNITISAHARDCASE
 "|||"
 STNITARTHAR

2. RINGSOFFIREANDWATER
 "|||"
 SOFTIREDIDLE

3. STRINGOFBEADTHEFTS
 "|||"
 GONGOFHEARTHS

Problem 7: Local Alignment: FASTA

For each ungapped local alignment shown below, produce the score using BLOSUM62 substitution matrix and check if any local alignments with a gap of length 1 are better. Use gap penalty $\delta = -3$.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
<th>S6</th>
<th>S7</th>
<th>S8</th>
<th>S9</th>
<th>S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>S2</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>0</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>12</td>
<td>19</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>15</td>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. HITREALLYHARDANDSTRIKE
 ||||
 MYALLYISARDENT

2. CLEARSKIESSPELLSSHINE
 |||||| |
 FEARSKISSESBYES

3. MYTEAMISWINNINGTHISGAME
 ||||
 STEAMSWINGING

Problem 8: Local Alignment: BLAST

For each pair of strings below, find all matches of length 5 and extend them using BLOSUM62 substitution matrix and no gaps.

1. DB: LIKEAREALFRIEND
 Query: NEWAREALSPRING

2. DB: GRINDANDBRINDANDBRINDYETAGRIND
 Query: MYRINDGRINS