
. .
CSC 448 Bioinformatics Algorithms Alexander Dekhtyar
. .

Suffix Trees. . .

Suffix Trees

Sufix trees form the backbone of many string-processing algorithms, including
string matching and palindrome discovery.

Definition. Given a string S of length m in alphabet Σ, a suffix tree T (S)
is a rooted directed tree with the following properties:

• T (S) has m leaves labeled 1, . . . , m.

• Each internal node other than the root node has at least two children.

• Each edge e = (v, u) has a label label(e), which a non-empty substring of
S.

• No two edges (v, u) and (v, w) can have labels that start with the same
character.

• Let r, v1, . . . , vk, i be the path in T (S) from the root node r to the leaf
node i. Then

label(r, v1)label(v1, v2) . . . label(vk, i) = S[i, . . .m].

Example. Figure 1 shows the suffix tree constructed for the string S = ATTAC.

Note. Suffix trees cannot be constructed if one suffix of S matches a prefix of
another suffix in S (i.e., if, essentially, the last character in S occurs elsewhere
in S). To rectify this, we use a special character $ 6∈ Σ as the terminating
character of all strings S we consider.

Terminology. The label of a path from root r of T (S) to a node v (a.k.a.,
the path-label of v), denoted label(v) is defined as

label(v) = label(r, v1)label(v1, v2) . . . label(vk, v),

where r, v1, . . . , vk, v is the path from r to v in T (S).

The string-depth of a node v in T (S) is |label(v)|: the length of the path-
label of v.

1

ATTAC

4

1

5

2

3

A

C T
T
A
C

C

T

T
A
C

A
C

root

Figure 1: Suffix tree for string ATTAC.

C4

1

5

2

3

A

C T
T
A
C

C

T

T
A
C

A
C

ATTAC

TT
ATTAC

root

Figure 2: Searching for occurrences of TT (successful) and ATTC (unsuccessful)
in string ATTAC.

String Matching Using Suffix Trees.

The following algorithm finds all matches of string P in a query string S.

1. Build T (S).

2. Match P along a path in S.

(a) If P is exhausted, then all leaves below the current position in the
tree will contain the positions of occurrences of P in S.

(b) If P cannot be matched, then P does not occur in S.

Example. Figure 2 shows a successful attempt to find a substring TT in string
S = ATTAC, and an unsuccessful attempt to find a substring ATTC.

Analysis. We note the following:

2

• The matching path of P in T (S) is unique (i.e., no two different paths in
T (S) starting from the root node share a prefix).

• If Σ is fixed, then each node can be traversed in constant time O(|Σ|).

• Matching P in T (S) takes O(|P |) time.

Näıve Algorithm for Suffix Tree Construction

Suffix tree construction problem. Given a string S = s1 . . . sn ∈ Σ∗, build
a tree T (S$), where ”$” 6∈ Σ is a special terminating character.

Algorithm. The algorithm constructs a sequence of trees N1, . . . , Nn+1, where
Nn+1 = T (S$). The construction proceeds as described in the following induc-
tive procedure:

1. N1 has two nodes, r (root) and 1, and an edge (r, 1) with label(r, 1) = S$.

2. Let Ni be constructed. We construct Ni+1 as follows. Starting at r (root
node of Ni), traverse Ni matching characters si+1si+2 . . . sn$ to the path
label.

• If some prefix si+1 . . . si+j matches a path label in the middle of an
edge label for some edge (u, v), then

– Create a new node v′.

– Delete edge (u, v). Insert edge (u, v′) labelled with the prefix of
label(u, v) which matched the suffix of si+1 . . . si+j .

– Insert edge (v′, v) labeled with the remainder of label(u, v).

– Create a new node i + 1. Insert edge (v′, i + 1). Set label(v′, i +
1) = si+j+1 . . . sn$.

• If some prefix si+1 . . . si+j matches a path-label of some node v ∈ Ni,
then

– Create new node i + 1.

– Insert an edge (v, i + 1). Set label(i + 1) = si+j+1 . . . sn$.

Example. Figure 3 shows the steps of construction of T (ATTAC$) using the
näıve algorithm. On steps 3 and 4 of the construction, the longest match ("T"
and "A" respectively) splits an edge label and leads to creation of internal nodes.

Analysis. Each step of the algorithm requires O(n) operations. There are
n + 1 steps, hence the näıve algorithm for suffix tree construction works in
O(n2) time.

Linear-time Construction of Suffix Trees

We describe a linear-time algorithm proposed by Ukkonen[1].

3

$

r
A
T
T
A
C
$

1

r
A
T
T
A
C
$

1

2

r

1

A
T
T
A
C
$ 2

3

r

2
3

1

T

A
C

$
T
A
C
$

A

T
T
A
C
$

C
$

4

AC$

r

2
3

1

A
C

$
T
A
C
$

A

T
T
A
C
$

C
$

4

T
5

C $

C$

N5

r

2
3

1

1

T

A
T

C
$

N N2

ATTAC$ TTAC$

N3

T

T
A
C
$

A
C

$

TAC$

C

N4

$
6

A
C

$
T
A
C
$

A

T
T
A
C
$

C
$

4

T
5

C $

N5

Figure 3: Construction of the suffix tree for string ATTAC$ using the näıve
algorithm.

I(S)

r
AT$

C

A
T

$
4

5
T
C
A
T
$

1

T
C
A
T
$

C
A

T$

2

3

$
T

$
7

6

T(S$):

S = ATTCAT

r
AT

C

4

T
C
A
T

1

T
C
A
T

C
A

T

2

3

T

T
A

Figure 4: The suffix tree and the implicit suffix tree for string ATTCAT.

Implicit suffix trees. Given a string S = s1 . . . sn, its implicit suffix tree is
a tree constructed from the suffix tree T (S$) as follows:

1. Remove $ from every edge label.

2. Remove any edge without a label.

3. Remove any node that has only one child.

Given a string S, I(S) denotes its implicit suffix tree. Ii(S) denotes the
implicit suffix tree of the substring s1 . . . si of S.

Example. Figure 4 shows the suffix tree and the implicit suffix tree for a
string ATTCAT.

4

Note. The implicit suffix tree for S has fewer leaves than T (S$) iff at least
one suffix of S is a prefix of another suffix of S.

Ukkonen’s algorithm for building implicit suffix trees. Given a string
S = s1 . . . sn, The algorithm builds a sequence of implicit suffix trees I1(S), . . . In(S)
as follows.

1. I1(S) contains two nodes, r (root) and 1 and and edge (r, 1) labeled
label(r, 1) = s1.

2. Let Ii(S) be constructed. Ii+1(S) is constructed in a sequence of i + 1
extensions:

• On extension 1 ≤ j ≤ i + 1, find the path sj . . . si in Ii(S).

• If needed (see below), extend the path by adding si+1 to the last
edge label.

Suffix extensions. Suffix extensions are performed using the following rules.
Let β = sj . . . si for extension step j of ith iteration of the algorithm. Suffix
extention rules ensure that the suffix βsi+1 is found in the implicit suffix tree
Ii+1(S). Three cases are possible:

• Rule 1. In Ii(S), β ends at a leaf node. Let (v, k) be the last edge of the
path. Then we extend the label of (v, k):

labeli+1(v, k) = labeli(v, k)si+1.

• Rule 2. In Ii(S), there is at least one path extending β and no path
extending β starts with si+1. Then,

– Create a new leaf node i + 1.

– If β stops at an internal node v, add an edge (v, i + 1), label it with
labeli+1(v, i + 1) = si+1.

– If β stops in the middle of an edge label for some edge (v, u), then

∗ create a new internal node w;

∗ remove (v, u);

∗ add edge (v, w) labeled with the part of β that was the prefix of
label(v, u);

∗ add edge (w, u) labeled with the part of label(v, u) that follows
β.

∗ add edge (w, i + 1) labeled labeli+1(w, i + 1) = si+1.

• Rule 3. There is a path following β in Ii(S) that starts with si+1. In
this case, do nothing.

Example. The three extension rules are illustrated in Figure 5. Figure 5
shows the progression of implicit suffix trees I1, I2, I3 and I4 for string S =ATAC.
Extension steps are marked as numeric labels near the paths to which they
correspond.

Rule 1 is used to extend I1(S) to I2(S) on extension steps 1 and 2. Rule
2 is used exactly once in the construction of I4(S) on extension step 3: at this
point, we are trying to place the suffix AC into the tree, and this leads to a
split on a path from root to node 1. Rule 3 is used on extension step 3 when
building I3(S) - suffix A is found in the tree, and no alterations are made.

5

4r

1

r

1

A
T

2T
r

1

A
T

2T r

1

ATAC

A

I2(S)
AT ATA

I3(S)I1(S)
A

A

I4(S)
ATAC

2TA AC

A

C

TA
C

1

2 2

1

3

1

2

3

3

C

4

Figure 5: Suffix extension rules for Ukkonen’s implicit suffix tree construction
algorithm.

Analysis. The key step of Ukkonen’s algorithm is building extensions on each
extension step. There are O(n2) extension steps. Each step can näıvely take
O(n) to complete, hence a näıve implementation of Ukkonen’s algorithm will
have running time O(n3), which is worse than the direct näıve construction of
a suffix tree.

Efficient implementation of Ukkonen’s Algorithm.

Problem. Given β = sj . . . si and Ni(S), locate the ends of β in Ni(S).

Näıve discovery of β in Ni(S) is what gives us the O(n3) algorithm.

Challenge. Speed up suffix discovery.

Speedup 1: Suffix links. Consider a string xα where x ∈ Σ and α ∈ Σ∗

(possibly empty). Let v be an internal node of some implicit suffix tree Ii(S) and
let label(r, v) = xα. If there is another node s(v) 6= v such that label(r, s(v)) =
α, then a suffix link is a pointer from s to s(v).

Lemma. Consider the process of building Ii+1(S) from Ii(S). Let new internal
node v be added to Ii+1(S) on extensions step j, and let label(r, v) = xα. Then,
either there exists an internal node u, such that label(r, u) = α, or, on extension
j+1 of the current phase, an internal node u, s.t., label(r, u) = α will be created.

Corollary. In Ukkonen’s algorithm, every newly created internal node will
have a suffix link from it by the end of the next extension.

Corollary. In any Ii(S), if some internal node v has path-label xα, there
exists a node s(v) in Ii(S) with path-label α.

First extension in an implicit suffix tree. Given Ii(S), the first extension
step of Ii+1(S) extends s1 . . . si, which is a path to a leaf node in Ii(S). We
can store a pointer to this node in the root r (note: it will be the same node on
every step phase i = 1, . . . n. Therefore, we can perform extension step j = 1 in
constant time on each phase.

6

Using suffix links. We use the suffix links to speed up tree traversal during
extension steps as follows:

1. Let i + 1 be the phase, and j ≥ 2 be the extension step. At this point, we
assume that we know where the string sj−1 . . . si ends in Ii(S).

2. Find the first node v above the end of sj−1 . . . si that either is the root r,
or has a suffix link from it. Let γ is the string between v and si.

3. If v is NOT root, traverse suffix link from v to s(v). Walk down from s(v)
following γ.

4. If v = r, follow sj . . . si.

5. Use extension rules to get sj . . . sisi+1 is in the tree.

6. If used extension rule 2 and created a new internal node w, then s(w) is
the end node for the suffix link from w. Create suffix link (w, s(w)).

Skip/count trick. On extension step j + 1 we start at s(v) and traverse the
string γ down the tree. We want to make this traversal efficient.

Näıve traversal is O(|γ|). Let |γ| = g and let γ = b1 . . . bg.

First character of γ must appear at exactly one edge (s(v), w) out of s(v).
Let g′ = |label(s(v), w)| be the number of characters on that edge. If g′ ≤ g,
then we can skip directly to w, w/o traversing γ along the edge. From w we
need to find bg′+1 . . . bk. We repeat the same trick.

If g′ > g, then skip to character g on label(s(v), w).

Edge-label compression. All edge labels are substrings of S. Instead of ex-
plicitly writing them out – it might take O(n2) space (and thus require quadratic
time to access — we replace each edge label with a pair of numbers i, j, such
that the edge label is si . . . sj and i, j is the smallest pair of indexes for which
it is true.

Rule 3 trick. Any phase i + 1 can be ended immediately after rule 3 is
applied.

Final trick. Once a leaf node is created in some Ii(S), it will remain a leaf
node in all followup Ik(S), k > i.

On phase i + 1, when a leaf edge is created to be labeled with sp . . . si+1

([p, i + 1]), replace i + 1 with some index e signifying ”the current end”. On
each phase, set e to i + 1 once.

Single phase algorithm. The tricks above lead to the following single phase
algorithm.

1. On phase i + 1:

2. Increment e to i + 1. (this implements all extensions 1 . . . ji).

3. Explicitly compute extensions starting at ji + 1 until reaching extension
j∗ where rule 3 applies, or until all extensions are done.

4. Set ji+1 to j∗ − 1 for the next phase.

7

Creating the true suffix tree. We can construct T (S$) from In(S) by
adding $ to the end of S and extending In(S) to In+1(S$).

References

[1] Esko Ukkonen (1995). On-line Construction of Suffix Trees, Algorithmica,
Vol. 14, pp. 249-260.

8

