Suffix Trees...

Suffix Trees

Sufix trees form the backbone of many string-processing algorithms, including *string matching* and *palindrome discovery*.

Definition. Given a string S of length m in alphabet Σ , a suffix tree T(S) is a rooted directed tree with the following properties:

- T(S) has m leaves labeled $1, \ldots, m$.
- Each internal node other than the root node has at least two children.
- Each edge e = (v, u) has a label label(e), which a non-empty substring of S.
- No two edges (v, u) and (v, w) can have labels that start with the same character.
- Let r, v_1, \ldots, v_k, i be the path in T(S) from the root node r to the leaf node i. Then

 $label(r, v_1)label(v_1, v_2) \dots label(v_k, i) = S[i, \dots m].$

Example. Figure 1 shows the suffix tree constructed for the string S = ATTAC.

Note. Suffix trees cannot be constructed if one suffix of S matches a prefix of another suffix in S (i.e., if, essentially, the last character in S occurs elsewhere in S). To rectify this, we use a special character $\notin \not\in \Sigma$ as the terminating character of all strings S we consider.

Terminology. The label of a path from root r of T(S) to a node v (a.k.a., the path-label of v), denoted label(v) is defined as

$$label(v) = label(r, v_1) label(v_1, v_2) \dots label(v_k, v),$$

where r, v_1, \ldots, v_k, v is the path from r to v in T(S).

The **string-depth** of a node v in T(S) is |label(v)|: the length of the pathlabel of v.

1

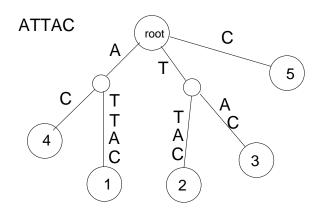


Figure 1: Suffix tree for string ATTAC.

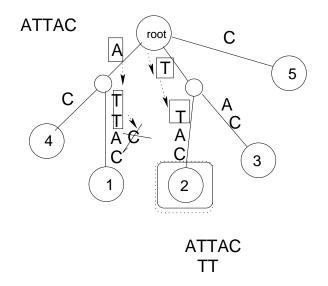


Figure 2: Searching for occurrences of TT (successful) and ATTC (unsuccessful) in string $\mathsf{ATTAC}.$

String Matching Using Suffix Trees.

The following algorithm finds all matches of string P in a query string S.

- 1. Build T(S).
- 2. Match P along a path in S.
 - (a) If P is exhausted, then **all leaves** below the current position in the tree will contain the positions of occurrences of P in S.
 - (b) If P cannot be matched, then P does not occur in S.

Example. Figure 2 shows a successful attempt to find a substring TT in string S = ATTAC, and an unsuccessful attempt to find a substring ATTC.

Analysis. We note the following:

- The matching path of P in T(S) is unique (i.e., no two different paths in T(S) starting from the root node share a prefix).
- If Σ is fixed, then each node can be traversed in constant time $O(|\Sigma|)$.
- Matching P in T(S) takes O(|P|) time.

Naïve Algorithm for Suffix Tree Construction

Suffix tree construction problem. Given a string $S = s_1 \dots s_n \in \Sigma^*$, build a tree T(S, where "\$" $\notin \Sigma$ is a special terminating character.

Algorithm. The algorithm constructs a sequence of trees N_1, \ldots, N_{n+1} , where $N_{n+1} = T(S\$)$. The construction proceeds as described in the following inductive procedure:

- 1. N_1 has two nodes, r (root) and 1, and an edge (r, 1) with label(r, 1) = S.
- 2. Let N_i be constructed. We construct N_{i+1} as follows. Starting at r (root node of N_i), traverse N_i matching characters $s_{i+1}s_{i+2}\ldots s_n$ \$ to the path label.
 - If some prefix $s_{i+1} \dots s_{i+j}$ matches a path label in the middle of an edge label for some edge (u, v), then
 - Create a new node v'.
 - Delete edge (u, v). Insert edge (u, v') labelled with the prefix of label(u, v) which matched the suffix of $s_{i+1} \dots s_{i+j}$.
 - Insert edge (v', v) labeled with the remainder of label(u, v).
 - Create a new node i + 1. Insert edge (v', i + 1). Set $label(v', i + 1) = s_{i+j+1} \dots s_n$ \$.
 - If some prefix $s_{i+1} \dots s_{i+j}$ matches a path-label of some node $v \in N_i$, then
 - Create new node i + 1.
 - Insert an edge (v, i+1). Set $label(i+1) = s_{i+j+1} \dots s_n$ \$.

Example. Figure 3 shows the steps of construction of T(ATTAC) using the naïve algorithm. On steps 3 and 4 of the construction, the longest match ("T" and "A" respectively) splits an edge label and leads to creation of internal nodes.

Analysis. Each step of the algorithm requires O(n) operations. There are n + 1 steps, hence the naïve algorithm for suffix tree construction works in $O(n^2)$ time.

Linear-time Construction of Suffix Trees

We describe a linear-time algorithm proposed by Ukkonen[1].

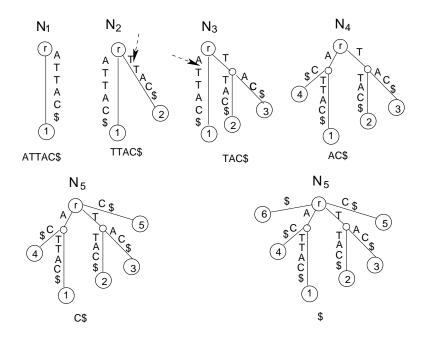


Figure 3: Construction of the suffix tree for string ATTAC\$ using the naïve algorithm.

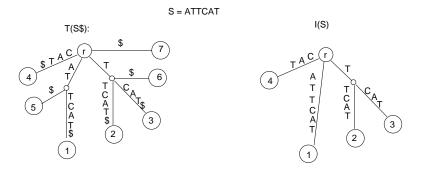


Figure 4: The suffix tree and the implicit suffix tree for string ATTCAT.

Implicit suffix trees. Given a string $S = s_1 \dots s_n$, its *implicit suffix tree* is a tree constructed from the suffix tree $T(S^{\$})$ as follows:

- 1. Remove \$ from every edge label.
- 2. Remove any edge without a label.
- 3. Remove any node that has only one child.

Given a string S, I(S) denotes its implicit suffix tree. $I_i(S)$ denotes the implicit suffix tree of the substring $s_1 \dots s_i$ of S.

Example. Figure 4 shows the suffix tree and the implicit suffix tree for a string ATTCAT.

Note. The implicit suffix tree for S has fewer leaves than T(S) iff at least one suffix of S is a prefix of another suffix of S.

Ukkonen's algorithm for building implicit suffix trees. Given a string $S = s_1 \dots s_n$, The algorithm builds a sequence of implicit suffix trees $I_1(S), \dots I_n(S)$ as follows.

- 1. $I_1(S)$ contains two nodes, r (root) and 1 and and edge (r, 1) labeled $label(r, 1) = s_1$.
- 2. Let $I_i(S)$ be constructed. $I_{i+1}(S)$ is constructed in a sequence of i + 1 extensions:
 - On extension $1 \le j \le i+1$, find the path $s_j \ldots s_i$ in $I_i(S)$.
 - If needed (see below), extend the path by adding s_{i+1} to the last edge label.

Suffix extensions. Suffix extensions are performed using the following rules. Let $\beta = s_j \dots s_i$ for extension step j of ith iteration of the algorithm. Suffix extention rules ensure that the suffix βs_{i+1} is found in the implicit suffix tree $I_{i+1}(S)$. Three cases are possible:

• Rule 1. In $I_i(S)$, β ends at a leaf node. Let (v, k) be the last edge of the path. Then we extend the label of (v, k):

$$label_{i+1}(v,k) = label_i(v,k)s_{i+1}$$

- Rule 2. In $I_i(S)$, there is at least one path extending β and no path extending β starts with s_{i+1} . Then,
 - Create a new leaf node i + 1.
 - If β stops at an internal node v, add an edge (v, i + 1), label it with $label_{i+1}(v, i + 1) = s_{i+1}$.
 - If β stops in the middle of an edge label for some edge (v, u), then
 - * create a new internal node w;
 - * remove (v, u);
 - * add edge (v, w) labeled with the part of β that was the prefix of label(v, u);
 - * add edge (w, u) labeled with the part of label(v, u) that follows β .
 - * add edge (w, i + 1) labeled $label_{i+1}(w, i + 1) = s_{i+1}$.
- Rule 3. There is a path following β in $I_i(S)$ that starts with s_{i+1} . In this case, do nothing.

Example. The three extension rules are illustrated in Figure 5. Figure 5 shows the progression of implicit suffix trees I_1, I_2, I_3 and I_4 for string S = ATAC. Extension steps are marked as numeric labels near the paths to which they correspond.

Rule 1 is used to extend $I_1(S)$ to $I_2(S)$ on extension steps 1 and 2. **Rule 2** is used exactly once in the construction of $I_4(S)$ on extension step 3: at this point, we are trying to place the suffix AC into the tree, and this leads to a split on a path from root to node 1. **Rule 3** is used on extension step 3 when building $I_3(S)$ - suffix A is found in the tree, and no alterations are made.

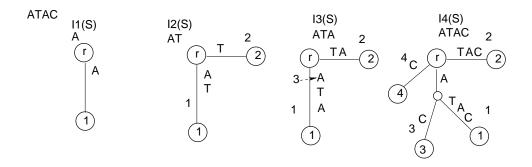


Figure 5: Suffix extension rules for Ukkonen's implicit suffix tree construction algorithm.

Analysis. The key step of Ukkonen's algorithm is building extensions on each extension step. There are $O(n^2)$ extension steps. Each step can *naïvely* take O(n) to complete, hence a naïve implementation of Ukkonen's algorithm will have running time $O(n^3)$, which is worse than the direct naïve construction of a suffix tree.

Efficient implementation of Ukkonen's Algorithm.

Problem. Given $\beta = s_j \dots s_i$ and $N_i(S)$, locate the ends of β in $N_i(S)$.

Naïve discovery of β in $N_i(S)$ is what gives us the $O(n^3)$ algorithm.

Challenge. Speed up suffix discovery.

Speedup 1: Suffix links. Consider a string $x\alpha$ where $x \in \Sigma$ and $\alpha \in \Sigma^*$ (possibly empty). Let v be an internal node of some implicit suffix tree $I_i(S)$ and let $label(r, v) = x\alpha$. If there is another node $s(v) \neq v$ such that $label(r, s(v)) = \alpha$, then a *suffix link* is a pointer from s to s(v).

Lemma. Consider the process of building $I_{i+1}(S)$ from $I_i(S)$. Let new internal node v be added to $I_{i+1}(S)$ on extensions step j, and let $label(r, v) = x\alpha$. Then, either there exists an internal node u, such that $label(r, u) = \alpha$, or, on extension j+1 of the current phase, an internal node u, s.t., $label(r, u) = \alpha$ will be created.

Corollary. In Ukkonen's algorithm, every newly created internal node will have a suffix link from it by the end of the next extension.

Corollary. In any $I_i(S)$, if some internal node v has path-label $x\alpha$, there exists a node s(v) in $I_i(S)$ with path-label α .

First extension in an implicit suffix tree. Given $I_i(S)$, the first extension step of $I_{i+1}(S)$ extends $s_1 \ldots s_i$, which is a path to a leaf node in $I_i(S)$. We can store a pointer to this node in the root r (note: it will be the same node on every step phase $i = 1, \ldots n$. Therefore, we can perform extension step j = 1 in constant time on each phase.

Using suffix links. We use the suffix links to speed up tree traversal during extension steps as follows:

- 1. Let i + 1 be the phase, and $j \ge 2$ be the extension step. At this point, we assume that we know where the string $s_{j-1} \dots s_i$ ends in $I_i(S)$.
- 2. Find the first node v above the end of $s_{j-1} \dots s_i$ that either is the root r, or has a suffix link from it. Let γ is the string between v and s_i .
- 3. If v is NOT root, traverse suffix link from v to s(v). Walk down from s(v) following γ .
- 4. If v = r, follow $s_j \dots s_i$.
- 5. Use extension rules to get $s_j \dots s_i s_{i+1}$ is in the tree.
- 6. If used extension **rule 2** and created a new internal node w, then s(w) is the end node for the suffix link from w. Create suffix link (w, s(w)).

Skip/count trick. On extension step j + 1 we start at s(v) and traverse the string γ down the tree. We want to make this traversal efficient.

Naïve traversal is $O(|\gamma|)$. Let $|\gamma| = g$ and let $\gamma = b_1 \dots b_g$.

First character of γ must appear at exactly one edge (s(v), w) out of s(v). Let g' = |label(s(v), w)| be the number of characters on that edge. If $g' \leq g$, then we can skip directly to w, w/o traversing γ along the edge. From w we need to find $b_{q'+1} \dots b_k$. We repeat the same trick.

If g' > g, then skip to character g on label(s(v), w).

Edge-label compression. All edge labels are substrings of S. Instead of explicitly writing them out – it might take $O(n^2)$ space (and thus require quadratic time to access — we replace each edge label with a pair of numbers i, j, such that the edge label is $s_i \ldots s_j$ and i, j is the smallest pair of indexes for which it is true.

Rule 3 trick. Any phase i + 1 can be ended immediately after **rule 3** is applied.

Final trick. Once a leaf node is created in some $I_i(S)$, it will remain a leaf node in all followup $I_k(S)$, k > i.

On phase i + 1, when a leaf edge is created to be labeled with $s_p \dots s_{i+1}$ ([p, i+1]), replace i + 1 with some index e signifying "the current end". On each phase, set e to i + 1 once.

Single phase algorithm. The tricks above lead to the following single phase algorithm.

- 1. On phase i + 1:
- 2. Increment e to i + 1. (this implements all extensions $1 \dots j_i$).
- 3. Explicitly compute extensions starting at $j_i + 1$ until reaching extension j^* where **rule 3** applies, or until all extensions are done.
- 4. Set j_{i+1} to $j^* 1$ for the next phase.

Creating the true suffix tree. We can construct T(S\$) from $I_n(S)$ by adding \$ to the end of S and extending $I_n(S)$ to $I_{n+1}(S\$)$.

References

 Esko Ukkonen (1995). On-line Construction of Suffix Trees, Algorithmica, Vol. 14, pp. 249-260.