
. .
CSC 448 Bioinformatics Algorithms Alexander Dekhtyar
. .

Repeated Sequence and Palindrome Detection. . .

Problem Specifications

Following string matching, two more string analysis problems occur commonly
in bioinformatics applications: repeated sequence detection and palindrome de-
tection. Both problems are introduced below.

Maximal repeated pairs. A maximal pair of repeated strings or a maximal
repeated pair in a string S = s1 . . . sn, is a pair of identical substrings P1 =
si . . . si+m and P2 = sj . . . sj+m, P1 = P2, which start at different positions in
S (i.e., i 6= j), such that si−1 6= sj−1 and si+m+1 6= sj+m+1.

A maximal repeated pair can be represented as a triple 〈i, j, m〉 where i and j

are starting positions of the substrings P1 and P2 and m is the length of P1 and
P2. Given a string S, the set of all maximal repeated pairs is denoted R(S).

Palindromes. A string P = p1 . . . pk of even length k is called a palindrome
if p1 = pk, p2 = pk−1, . . . pk/2 = p1+k/2. A string of odd length P = p1 . . . pk

is a palindrome if p1 . . . p(k−1)/2p(k−1)/2+1 . . . pk (i.e., an even-length string con-
structed out of P by taking out the mid-point character) is an even-length
palindrome.

Meaningful palindromes exist in all human languages. Examples of palin-
dromes in English are "dud", "madam", "never odd or even", "some men interpret

nine memos", "don’t nod", "may a moody baby doom a yam" and "no, it

never propagates if I set a gap or prevention".

DNA palindromes. In a DNA, a palindrome definition is somewhat dif-
ferent. A complimented DNA palindrome is a string S = s1 . . . sm in the
{A, T, C, G} alphabet with the compliment relation defined as compliment(A) =
T ; compliment(T) = A; compliment(C) = G; compliment(G) = C, where:

• if m is even: s1 = sm, s2 = sm−1, . . . pm/2 = p1+m/2.

• if m is odd: s1 = sm, s2 = sm−1, . . . p(m−1)/2 = p1+(m−1)/2.

Complimented palindromes play an important role in DNA: such sequences
appear often in various regulatory DNA sequences. Also, complimented palin-
dromes may form hairpin structures on a single DNA strand: nucleotides on

1

each strand, rather than binding to the complimentary nucleotide on the oppo-
site strand bind to the complimentary nucleotide of the complimentary palin-
drome.

Often, palindromes in DNA come with gaps. A gapped complimentary DNA
palindrome is a string S = P1QP2, such that P1P2 is a complimentary palin-
drome, and Q = q1 . . . qk, and q1 6= compliment(qk).

A maximal palindrome substring in string S = s1 . . . sn, is a string P =
si . . . sj , such that P is a palindrome, and si−1 6= sj+1.

A maximal (gapped) complimentary DNA palindrome substring in string S =
s1 . . . sn from the {A, T, C, G} alphabet is a string P = si . . . sj, such that P is
a (gapped) complimentary DNA palindrome, and si−1 6= sj+1.

Maximal repeat detection problem. Given a string S = s1 . . . sn find all
strings P that are maximal repeated strings in S.

Example. Consider a string S =ATTGATTCATTC. This string has two maximal
repeated strings: ATT and ATTC. ATT is represented by two triples: 〈1, 5, 3〉 and
〈1, 9, 3〉. ATTC is represented by a single triple 〈5, 9, 4〉. Note, that according to
our definition of a maximal repeat, 〈5, 9, 3〉 does not form a maximal repeated
sequence.

Note also, that despite the fact that ATT is a substring of ATTC, the output of
an algorithm solving the maximal repeat detection problem must contain
both.

Maximal palindrome detection problem. Given a string S = s1 . . . sn,
find all maximal palindromes in it.

Maximal DNA palindrome detection problem. Given a string S =
s1 . . . sn in the {A, T, C, G} alphabet, find all maximal complimentary DNA

palindromes in it.

Efficient Algorithm for Maximal Repeated String

Detection

We use suffix trees to construct an efficient algorithm for determining all
maximal repeated strings. The algorithm is based on the following observation:

Lemma (Maximal repeats). Let T (S) be a suffix tree of a string S. Let
P be a maximal repeated string in S. Then there exists an internal node v in
T (S) whose path label is exactly P .

The corollary to this lemma is useful for evaluation of our algorithm:

Theorem. A string S of length n can have no more than n maximal repeats.

This is so, because there are no more than n internal nodes in T (S).

2

w

6
3

8
r

2

4

5

7

A
T
T

$

1

$
T
T
A
C

$

T
T

C A T T $

C
A

T
T$

$
$

CATT$

C

A

A T T C A T T $
1 2 3 4 5 6 7 8

T

T
A

T
T

v

u

Figure 1: Illustration of left-diversity in suffix trees.

Definition. Let S = s1 . . . sn be a string. A character si−1 is called the left
character for position i in S. A node v in T (S) is called left diverse if at least
two leaves in v’s subtree have different left characters.

Example. Consider a string S = ATTCATT. The suffix tree T (S$) is show in
Figure ?? together with the left character (in a square box) for each leaf node
(a.k.a, position in the string). Based on the definition of left diversity, of the
three internal nodes, v, u and w, two, v and u are left diverse, while w is not.

Example. Consider the same string S = ATTCATT. We can see that there are
two distinct maximal substrings in S: ATT, represented by a triple 〈1, 5, 3〉 and
T, represented by triples 〈2, 3, 1〉, 〈6, 7, 1〉, 〈2, 7, 1 and 〈3, 6, 1〉.

These two substrings, correspond exactly to the path labels of two nodes in
T (S): ATT is a path label of node v, while T is a path lable of node u.

We notice that v and u are the two left diverse nodes in T (S$).

This is NOT a coincidence.

Theorem (left diversity). A string P is a maximal repeated string in a
string S, iff the node in T (S) with path label P is left diverse.

The set of all left maximal repeats in a string S can be represented as a
subtree of T (S) (or of T (S$)) which contains the paths to all the deepest (oth-
erwise known as frontier) left diverse nodes. This is a compact representation,
as it requires at most n nodes and n edges.

Finding left diverse nodes in a suffix tree. We assume that the algorithm
is given the string S, its size n and the suffix tree T (S$) as inputs. The algorithm
operates as follows.

• Perform a depth-first search traversal of T (S$).

• Base case. For each leaf node, record its left character.

3

• Inductive step. For each internal node v examine the labels of its chil-
dren.

– If at least one child is labeled as left diverse then label v as left
diverse.

– If no child is left diverse, then

∗ If all child labels coincide (i.e., are the same), set the label of v

to be the same.

∗ If at least two children have different labels then set the label of
v to be left diverse.

• Pruning. Delete from T (S$) all nodes that are NOT marked as left
diverse. Return the remaining tree.

Analysis. The suffix tree T (S$) has the size O(n), where n is the length of
S. Depth-first search traversal visits each node exactly once. There are O(n)
nodes with a parent in T (S$). The label of each such node is considered exactly
once during the induction step. Any non-left diverse node in the tree can be
deleted immediately after its label is considered during the induction step for its
parent. Therefore, the running time of this algorithm is O(n).

Palindrome detection: preparation

Before we introduce the palindrome detection algorithm, we need to discuss one
more notion, generalized suffix trees and two problems, algorithms for which are
an important part of our palindrome detection method: lowest common an-
cestor (lca) detection in trees and longest common extension problem.

We introduce and discuss these problems below.

Generalized Suffix Tree

Definition. A generalized suffix tree is a suffix tree representing all suffixes
of a set of strings S1, . . . , SN .

Notes. In practice, all strings represented in the generalized suffix tree are
going to be $-terminated. Leaf nodes will now store multiple labels: one per
string being processed. We encode each label as a pair: (i, j), where i is the
ordinal representing the string, and j is the ordinal representing the position in
that string.

Construction. Informally, a genalized suffix tree for a sequence S1, . . . SN of
strings can be constructed as follows:

1. Construct T (S1$).

2. Starting with T (S1§), traverse each suffix of S2$ in it, and extend the tree
where necessary. Add leaf labels to all leaf nodes you end at.

3. Repeat step 2 for S3, S4, . . . SN .

4

1:4

T A T T

A T A T +
T A T T

r

A

A
T

T
$

$

T
$

A
T

$ $
T

2:1

1:1
1 4

r

A

A
T

T
$

$

T

A
T
$

$

A T A T

3 2 1:3

1:2

1:4

rAT

T
$

A
T
$

$

T
$

T

2:2

1:1

1:3

$
2:3 A

T
$ $

T

1:22:1

2:4

A T A T +

Figure 2: Transforming a suffix tree into a generalized suffix tree.

Example. Figure ?? shows the construction of the generalized suffix tree for
a pair of strings S1 = ATAT and S2 = TATT. The top left tree is T (S1$). On the
top right tree, we performed insertion of the first suffix from S2: TATT. (Arrow
indicates new addition to the tree). The bottom tree is a full generalized suffix
tree for the pair of strings S1 and S2.

Lowest Common Ancestor in Trees

Definition. In a tree T , the lowest common ancestor (lca) of two nodes x and
y is the deepest node z that is an ancestor to both x and y.

The lca definition is illustrated in Figure ??.

Näıve algorithm. Start from x and y, trace their ancestry in parallel until
you hit a node that’s the same.

Efficient algorithm. With some special preparation, the lca between two
nodes in a tree can be found in constant time.

For complete binary trees, this is a matter of clever marking of the nodes with
binary codes, and a bit-wise XOR operation between the codes of the two nodes.

For arbitrary trees, a mapping I from the nodes of the tree to the nodes of a
complete binary tree can be developed, with the property that I(lca(u), lca(v)) =
lca(I(u), I(v)).

Longest Common Extension

Problem definition. Given two strings S1 = s1 . . . sm, S2 = t1 . . . tn, and
two numbers i, j, the longest common extension of S1 at i and S2 at j is a

5

z − lca

x
y

root

Figure 3: Illustrating the definition of lowest common ancestor: node z is the
lca for nodes x and y.

string P = p1 . . . pk, such that si . . . si+k = tj . . . tj+k = P , but si+k+1 6= tj+k+1

(or either i + k = m or j + k = n).

Efficient algorithm. The longest common extension of two strings at two
positions can be computed in constant time with linear pre-processing using the
following algorithm:

1. Create a generalized suffix tree T (S1, S2) and process it to allow lca
queries.

2. Find nodes (leaves) vi and vj in T (S1, S2) representing the suffixes si . . . sm

and tj . . . tn.

3. Find u = lca(vi, vj). Return the path label for u.

Palindrome detection

Idea. Let S = s1 . . . sn. Consider the string S′ = sn . . . s1, i.e., S′ = reverse(S).
The idea behind the linear-time algorithm for even-length palindrome de-
tection is based on the following observation:

Let S contain an even-length palindrome centered immediately after
character sq. Let the radius of this pa lindrome be k. Then the k

characters starting at position n − q + 1 in string S′ are identical
to sq . . . sq+k.

Example. This is illustrated in figure ??. We consider a string S =ATCAACTGAT.
It has a palindrome TCAACT centered right after position q = 4. The reverse
of S, S′ =TAGTCAACTA. Reverses preserve the palindrome. The three-letter ex-
tension of S at position q + 1 = 5 is ACT . Similarly, the three-letter extension
at position n − q + 1 = 7 of S′ is ACT - the reverse of the first half of the
palindrome in S.

6

A T C A A C T G A TS:
1 2 3 4 5 6 7 8 9 10

S’: T A G T C A A C T A

q=4

n−q+1 = 7

Figure 4: Illustrating the key idea of the palindrome detection algorithm for
even-length palindromes. A palindrome can be found as the maximal common
extension in S and S′ = reverse(S) at positions q + 1 and n − q + 1.

S:

S’:

A T C A T A C T G A T
1 2 3 4 5 6 7 8 9 10 11

q=5

T A G T C A T A C T A

n−q+1 = 7

Figure 5: Illustrating the key idea of the palindrome detection algorithm for
odd-length palindromes. A palindrome can be found as the maximal common
extension in S and S′ = reverse(S) at positions q and n − q + 1.

S:

S’:

1 2 3 4 5 6 7 8 9 10 11

q=5

n−q+1 = 7

A T C A T T G A G A T

A T C T C A A T G A T

Figure 6: Illustrating the key idea of the palindrome detection algorithm for
complimentary DNA palindromes. S′ = reverse(compliment(S)).

7

Algorithm. We propose the following algorithm for even-length palindrome
detection.

1. Given a string S, construct S′ = reverse(S).

2. Construct the generalized suffix tree T (S, S′).

3. For q := 1 to n − 1 do:

(a) Let x = LongestCommonExtension((S : q + 1), (S′ : n − q + 1)).

(b) If x > 0, there is a palindrome of length 2x centered right after q in
S.

Odd-length palindromes. For odd-length palindromes, we note the if there
is a palindrome in S centered on position q, then the maximal extension of
(S : q) and (S′ : n − q + 1) is going to be equal to the central character of the
palindrome followed by the ”wing” of the palindrome (Figure ??.

To detect odd-length palindromes, therefore, we check for LongestCommonEx-
tension((S : q), (S′ : n − q + 1)) and ensure that its length is greater than 1.

Complimentary DNA palindromes. To detect complimentary DNA palin-
dromes instead of taking S′ = reverse(S), we set S = reverse(compliment(S)).
Then continue as before. Figure ?? illustrates this idea.

References

[1] Dan Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press, 1997.

8

