
. .
CSC 448 Bioinformatics Agorithms Alexander Dekhtyar
. .

String Matching. . .

String Matching Problems and Bioinformatics

Exact String Matching. Given a string S = s1s2 . . . sn of charachters in
some alphabet Σ = {a1 . . . aK} and a pattern or query string P = p1 . . . pm,
m < n in the same alphabet, find all occurrences of P in S.

”find all occurrences” = report all positions i1, . . . , ik such that sij
. . . sij+m =

P .

Approximate String Matching.[4] Given a string S = s1s2 . . . sn of charachters
in some alphabet Σ = {a1 . . . aK}, pattern or query string P = p1 . . . pm, m < n
in the same alphabet, a maximum error allowed k ∈ R, and a distance

function d : Σ∗ × Σ∗ → R, find all such positions i in S, that for some j,

d(si . . . sj , P) ≤ k.

String matching in bioinformatics. Certain known nucleotide and/or amino
acid sequences have properties known to biologists. E.g.,ATG is a string which
must be present at the beginning of every protein (gene) a DNA sequence.

A primer is a conserved DNA sequence used in the Polymerase Chain Reaction
(PCR) to identify the location of the DNA sequence that will be amplified
(amplification starts at the location immediately following the 3’ end primer,
known as the forward primer). Finding if a DNA sequence contains a specific
(candidate) primer is therefore paramount to the ability to run correct PCR.

A conserved DNA sequence is a sequence of nucleotides in DNA, which is
found in the DNA of multiple species and/or multiple strains (for bacteria/prokaryotes),
or, in general, in all/almost all sequences in a specific collection. Some sequences
are conserved precisely. However, a lot of sequences are conserved with some
modifications. Finding such modified strings is an important process for map-
ping DNA of a new organism, based on the known DNA of a related organism.

For example, we know that genetic code is redundant. Consider the following
sequence of nucleotides:

GCTACTATTTTTCAT

When read in forward frame 0, this sequence encodes the following sequence
of amino acids:

1

ATIFH

Because of redundancy of the genetic code, the following sequences of nu-

cleotides will produce the same sequence of amino acids (lower case letters show

differences with the original string):

GCT ACT ATT TTT CAT

GCc ACc ATT TTa CAc

GCc ACc ATc TTg CAT

GCT ACT ATc TTa CAc

GCg ACc ATa TTc CAc

A T I F H

Therefore, it is often useful to search for approximate string matches in DNA
sequences.

Exact String Matching.

There is a wide range of exact string matching algorithms. We briefly outline
the following:

1. Näıve string matching.

2. Rabin-Karp algorithm.

3. Finite-automata-based string matching.

4. Knuth-Morris-Pratt (KMP) algorithm.

5. Boyer-Moore algorithm.

6. Gusfield’s Z algorithm.

Algorithm Evaluation. We are interested in the following properties of each
algorithm:

• Worst-case algorithmic complexity. The traditional measure of algorithm
efficiency.

• Expected algorithmic complexity. Behavior of some algorithms is much bet-

ter than the worst case on most inputs. (E.g., Rabin-Karp algorithm has
the same worst-case complexity as the näıve method), but, in practice,
runs much faster on most inputs of interest).

• Space complexity. We prefer our algorithms, even the fast ones to occupy
space that is linear in the problem size.

2

Problem size. The ”official” input to all string matching algorithms is a pair
of strings S and P . Their lenghts, n and m, respecitvely, supply the problem
size for us.

We note that m < n. In some cases, especially in bioinformatics applications
m << n: our DNA sequences may be millions of nucleotides long, while the
pattern P we are looking for (e.g., for primer identification) may be on the order
of tens of nucleotides. In such cases, we may consider the size of input to be n,
rather than n + m.

In our studies we fix the alphabet Σ. In bioinformatics, it makes sense,
since the two known alphabets, nucleotide and amino acid ones, have 4 and 20
characters in them repsectively. Occasionally, Σ = K may be considered part
of the size of input. (in our studies, it won’t).

Näıve Algorithm

The näıve algorithm takes as input strings S and P and checks if si . . . si+m = P
for each i = 1, . . . n−m+1 directly. The pseudocode for this algorithm looks as
follows. Here and in further algorithms we adopt notation S[x, y] to represent
the substring sx . . . sy of S.

Algorithm NaiveStringMatch(S,P,n,m)
begin

for k= 1 to n−m + 1 do
if P = S[k, k + m− 1] then
output(k);

end for
end

Analysis. The if statement in the algorithm takes (up to) m atomic compar-
isons of the form P [i]? = S[k+ i−1] to perform. The for loop repeats n−m+1
times. Therefore the running time of this algorithm is O((n −m + 1) · m) =
O(nm−m2 + m) = O(nm). Note, that is m = n

2 , then O(nm) = O(n2), so the
in the worst-case, the näıve algorithm is quadratic in the length of the input
string S.

Rabin-Karp Algorithm

Idea. The key ideas behind this algorithm are:

• Comparison of two numbers is up to m times faster than comparison of
two strings of length m.

• Represent the string P and substrings of S of length m as numbers in base
K (size of the alphabet) numeric system. Compare the numbers to check
if the strings match.

• If numeric representations of strings start being too large to allow for a
single comparison, compare numeric representations of the two strings mod
q for some relatively large number q.

The latter will require a comparison of the actual strings in case their
numeric values co-incide, but in practice there should be very few of such
comparisons that would fail.

3

Numeric representation of strings. Let Σ = {a1, . . . , aK}. We associate
with each character ai a digit i− 1 in base K numeric system.

Example. The nucleotide alphabet is Σ = {A, C, G, T }. We can map indi-
vidual characters in this alphabet to digits in base 4 system as follows:

Character Digit
A 0
C 1
G 2
T 3

Consider a string P = p1 . . . pm in alphabet Σ. Without loss of generality
we use pi to refer both to the character in Σ and to the digit in the base K
alphabet, associated with it. The numeric p value represented by P can be
computed using the following expression:

p = pm + K(pm−1 + K(pm−2 + . . . + K(p2 + Kp1)) . . .).

Given a string S = s1 . . . sn, where n > m, the numeric value of S[1, m], t0
can be computed in the same way:

t0 = sm + K(sm−1 + K(sm−2 + . . . + K(s2 + Ks1)) . . .).

More importantly, given ti−1, the numeric value ti representing substring
S[i + 1, i + m] can be computed incrementally as follows:

ti = K(ti−1 −Km−1si) + si+m.

We can precompute Km−1 as this number is a constant.

Example. Consider for following string S= "ATTCCGT". Suppose we are look-
ing for four-letter substrings. There are |S| − 4 + 1 = 7− 4 + 1 = 4 four-letter
substrings in S: S[1, 4], S[2, 5], S[3, 6] and S[4, 7]. We compute t0 for S[1, 4]
using the mapping of nucleotide symbols to digits in base 4 numeric system as
follows:

S[1, 4] = "ATTC"; t0 = 1 + 4(3 + 4(3 + 4 · 0)) = 1 + 4(3 + 4 · 3) = 1 + 4 · 15 = 61.

Further, we compute t1, t2 and t3 as follows:

S[2, 5] = "TTCC"; t1 = 4(t0 − 43 · 0) + 1 = 4(61− 0) + 1 = 244 + 1 = 245.

S[3, 6] = "TCCG"; t2 = 4(t1 − 43 · 3) + 2 = 4(245− 64 · 3) + 2 = 4(245− 192) + 2 = 4 · 53 + 2 = 214.

S[4, 7] = "CCGT"; t3 = 4(t2 − 43 · 3) + 3 = 4(214− 192) + 3 = 4 · 22 + 3 = 91.

Algorithm in a nutshell. Given P and S, we compute the numeric values p
for P and t0 for S[1, m]. We compare p to t0, and then, using the incremental
recompuation method, compute t1, t2, etc. and compare them to p. Any time
p = ti for some i, we report i + 1 as the position of a match.

4

Complication. This version of Rabin-Karp algorithm works as desired, when
m is small enough, that p and ti can fit the machine word. E.g.,

450 = 1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376∼ 1031.

This means that strings P up to length 51 can be found in larger strings on
processors with 32-bit architectures. For longer strings, the algorithm will have
to be modified.

Modification. Pick a number q, and perform computations of p and ti values
modq. If p 6= ti(modq), then S[i + 1, i + m] 6= P . However, p = ti does not
immediately guarantee S[i+1, i+m] = P . We run the full comparison of P
and S[i+1, i+m]. The pseudocode for the modified algorithm is as follows. The
algorithm takes as input, in addition to strings P and S and their respective
lenghts m and n, two more numbers: K, the size of the alphabet and q.

Algorithm RabinKarp(S, P, n, m, K, q)
begin

h← Km−1 mod q;
p← 0;
t0 ← 0;
for i= 1 to m do //compute initial numeric values

p← (K · p + P [i]) mod q;
t0 ← (K · t0 + S[i]) mod q;

end for
for j= 0 to n−m do //search for substring P in S

if p = tj then //if numeric values match,

if P = S[j + 1, j + m] then need to compare substrings

output j + 1;
end if

end if
if j < n−m then //move onto the next substring in S

tj+1 = ((K(tj − S[j + 1] · h) + S[j + m + 1]) mod q;
end for

end

Analysis. The if P = S[j +1, j + m] comparison costs O(m) atomic compar-
isons. In the worst case (e.g., when S = An and P = Am), this line will be
executed on each iteration of the for loop. There are n−m + 1 iterations, and
therefore, the worst-case complexity of this algorthm is O((n −m + 1) · m) =
O(nm). (We also note that the first loop has running time O(m), and therefore
does not contribute significantly to the overall complexity of the algorithm).

However, unlike the näıve algorithm, Rabin-Karp algorithm improves its run-
ning time significantly when there are relatively few, comparing to n matches
between p and t0. E.g., in many cases when P is NOT a substring of S, the
running time of the algorithm will be O(m + n) (the first loop takes O(m), the
second – O(n)).

If S has v valid shifts (i.e., v locations in which P occurs), then we can
estimate the running time of the Rabin-Karp algorithm as O(m)+O(n(v+n/q)),
where n/q is our estimate of the probability of a ”misfire” (i.e., p = ti, when
P 6= S[i + i, i + m]).

5

Choosing q. The best value of q is a prime number that is just a bit smaller
than 2(B − 1) where B is the number of bits in the machine word on a given
processor architecture. For 16-bit words (16-bit INTs), take q = 32, 749. For
32-bit words, you can use q = 2, 147, 483, 629 or q = 2, 147, 483, 647 = 231 − 1.

Finite-automata-based String Matching

Idea. A string P = p1 . . . pm is a finite string, and therefore, is a regular
expression in Σ∗. A regular expression matching all strings in Σ∗ = {a1, . . . , aK}
that have P as a substring is

(a1|a2| . . . |aK)∗p1p2 . . . pm(a1|a2| . . . |aK)∗.

Therefore, we can use finite automata to check if an input string S has P as a
substring.

Algorithm structure. The finite-automata-based string matching consists
of two parts:

1. Preprocessing. Given a string P , a finite state machine (finite automa-
ton) MP for checking for the occurrence of P is constructed.

2. Matching. Given a string S and MP , MP is run on S, and it outputs
the index i− |P | for each index i of S, at which MP reaches a final state.

We notice that these two stages are completely decoupled. MP can be con-
structed, given P ahead of time. Also, if multiple strings need to be tested for
P being a substring (a situation very common in bioinformatics), the Prepro-
cessing step shall only be executed once.

Finite automata. A finite automaton M is a tuple

M = 〈Q, q0, A, Σ, δ〉,

where

• Q = {q1, . . . , ql} is called a set of states.

• q0 ∈ Q, is called the start state.

• A ⊆ Q is the set of accepting or final states.

• Σ = {a1, . . . , aK} is a finite input alphabet.

• δ : Σ×Q→ Q is the transition function.

M accepts string S = s1 . . . sn iff δ(sn, δ(sn−1, δ(. . . δ(s1, q0) . . .) ∈ A.

Finite Automata for substring matching. We want to design a finite
automaton MP for recognizing a given string P = p1 . . . pm as a substring in
the input stream. MP is constructed as follows: MP = 〈Q, q0, A, Σ, δ〉, where

• Q = {0, 1, . . .m}.

• q0 = 0.

6

0
A T A A

1 32 4

T

T

T

A
A

T

Figure 1: A finite automaton for matching against the string P =ATAA.

• A = {m}.

• Σ = {a1, . . . , aK}.

• delta is constructed as described below.

Defining the transition function. Clearly, we want δ(pi, i − 1) = pi for
i = 1, . . .m.

However, we cannot just say δ(a, i− 1) = 0 if a 6= pi. We may have to move
to a different state, because we may still be observing a valid non-empty prefix
of P .

Example. Consider a string P = ATAA and S =ATATATAA. We note that p1 =
s1 = A, p2 = s2 = T and p3 = s3 = A. However, p4 = A, while s4 = T , so
S[1, 4] 6= P :

S: A T A T A T A A

P: A T A a

However, at this point, s3s4 = AT form a valid non-empty prefix of P , so
rather than trying to reapply the entire string P to S[5, 8], we must to check if
S[3, 8] contains P , or, knowing that s3s4 = p1p2 — if S[5, 8] contains p3p4 as
its prefix:

S: A T A T A T A A

P: A T A a

P: A T A a

Similar situation occurs on this step as well, and again s5s6 = p1p2, so we need
to check if S[7, 8] has p3p4 as its prefix:

S: A T A T A T A A

P: A T A a

P: A T A a

P: A T A A

The finite state machine MP (in the {A, T } alphabet for simplicity) is shown
in Figure 1.

7

Constructing the transition function. A suffix function σ : Σ∗ −→ Q
is defined as follows:

σ(x) = i, where p1 . . . pi is the longest suffix of x, i.e., if x =
x1 . . . xn, then σ(x) = i means that xn−i . . . xn = p1 . . . pi.

For a string x ∈ Σ∗, σ(x) = m iff P is the suffix of x. We can now define the
transition function δ for our automaton:

δ(a, i) = σ(p1 . . . pia).

Computing the transition function. The following algorithm computes δ
directly according to the definition of the σ function.

Algorithm TransitionFunction(P , Σ, m)
begin

for q= 0 to m do // iterate over states of the DFA

foreach a ∈ Σ do // iterate over input characters

k ← min(m + 1, q + 2); // determine max length of prefix of P

repeat // which prefix of P is a suffix of P[1,q]a?

k ← k − 1; // decrease the length of prefix of P

until P [1, k] is a suffix of P [1, q]a;
δ[q, a]← k;

end for
end for
return δ;

end

String matching. Given a computed transition function δ of the DFA MP

constructed for P = p1 . . . pm, and an input string S, we can check if S con-
tains P (and report all appropriate shifts) using the following straightforward
algorithm:

Algorithm DFAMatch(S, n δ, m)
begin

q ← 0; // Start in initial state

for i = 1 to n do // for each input character

q ← δ(q, S[i]); // transition to a new state

if q = m then // accepting state reached?

output i−m; // start position of P in S is m positions to the right of i
end if

end for
end

Analysis. Algorithm TransitionFunction runs in O(m3 ·K) time. The outer
loops repeat m ·K times, the repeat loop runs for at most m + 1 times, and
suffix check is an O(m) operation.

Algorithm DFAMatch runs in Θ(n) time, so therefore, the total running time
of a single DFA-based match is O(n + m3 ·K).

There is a faster way to compute δ which runs in O(Km) time, which makes
the overall complexity of DFA matching O(n + Km). For small/fixed K (for
example, for our nucleotide alphabet), this reduces to O(n + m).

8

Knuth-Morris-Pratt Algorithm

Outline. The DFA string matching requires a precomputation of a full tran-
sition function. However, this function essentially contains ”too much informa-
tion”. We can precompute in time O(m) the essential information needed, but
keep the actual matching process to Θ(n).

Example. Let P =ATAT. Consider a string S = ATTAATAT. Consider the initial
attempt to align P against the first four characters of S (we show mismatches
in lower case):

S: A T T A A T A T

P: A T a t

At this point, we know that s2 = T and s3 = T . But p1 = A, so there is no

need to check if S[2, 5] = P , as we know s2 6= p1. Similarly, there is no need
to check S[3, 6] = P , because s3 6= p1. The key is that we’ve already acquired
enough information to draw the conclusion that the next check should start at
position 4:

S: A T T A A T A T

P: A T a t

P: A t a t

We learned that s5 = A = p1, so next check has to come against S[5, 8]:

S: A T T A A T A T

P: A T a t

P: A t a t

P: A T A T

The Knuth-Morris-Pratt algorithm[3] finds a way to formalize these shortcuts
and savings.

Prefix function. Given a string P = p1 . . . pm, a prefix function π : {1, . . . , m} −→
{0, . . . , m− 1} is defined as follows:

π[q] = max(k|k < q and P [1, k] is a suffix of P [1, q]).

Essentially, we shift P against itself and determine, when its prefixes appear
as suffixes in the shift.

Example. Let P = AATAAT . We construct π as follows. For q = 1, P [1, 1] =
A, and the only prefix of P of length less than 1 is ǫ, so π[1] = 0.

For q = 2, P [1, 2] = AA, the largest prefix of P of length of 1 or less, which
is a suffix of P [1, 2] is P [1, 1] = A:

P[1,2]: A A

P : A | A T A A T

9

Therefore, π[2] = 1.

We continue shifting P against itself (vertical bar indicates the largest sub-
string to try):

P[1,3]: A A T

P : . A A | T A A T

P[1,4]: A A T A

P : A A T | A A T

P[1,5]: A A T A A

P : A A T A | A T

P[1,6]: A A T A A T

P : A A T A A | T

This implies the following prefix function:

q: 1 2 3 4 5 6
π[q] 0 1 0 1 2 3
P [1, π[q]] ǫ A ǫ A AA AAT

Computing prefix function. The following algorithm computes the prefix
function:

Algorithm PrefixFunction(P , m)
begin

declare int π[1, .., m];
π[1]← 0;
k ← 0;
for q = 2 to m do
while k > 0 and P [k + 1] 6= P [q] do
k ← π[k];

end while
if P [k + 1] = P [q] then
k ← k + 1;

end if
π[q]← k;

end for
return π;

end

Knuth-Morris-Pratt Algorithm. The prefix function allows for the string
matching algorithm to ”know” how far it is possible to slide our pattern string
P along the input string S.

10

Algorithm KMP-Match(S, P ,n, m)
begin

π[1, .., m]← PrefixFunction(P, m);
q ← 0; //number of characters matched

for i = 1 to n do
while q > 0 and P [q] 6= S[i] do
q ← π[q];

end while
if P [q + 1] = S[i] then
q ← q + 1;

end if
if q = m then
output m− i;
q ← π[q];

end if
end for
return π;

end

Analysis. KMP-Match runs in O(n) plus the time it takes to construct π.
PrefixFunction runs in O(m), and the total running time of KMP-Match is O(n+
m).

Boyer-Moore Algorithm

Idea. The Boyer-Moore algorithm[1] is well designed for the following types
of problems:

• Large pattern string P .

• Large alphabet Σ.

While the first situation is not uncommon in bioinformatics, the traditional
alphabet of nucleotides Σ = {A, T, C, G} is small, and Boyer-Moore algorithm
might not provide the best benefit. The amino acid alphabet has 20 characters
in it, for this alphabet, Boyer-Moore is a good choice.

The algorithm is based on three key ideas.

Idea 1: Right-to-left scan. All previous algorithms compared P to a sub-
string of S in a left-to-right fashion, first comparing p1 to si, then p2 to si+1

and so on.

Boyer and Moore observed, that sometimes, one can get more information
from a right-to-left comparison. E.g., consider a pattern string P =AATAT and
a string S =AATAGTGATCG. When P aligned against S[1, 5], we get:

S: A A T A G T G A T C G

P: A A T A t

If we attempt a left-to-right match, we will successfully match P [1, 4] and
S[1, 4] before discovering p5 6= s5. We might need to consider matching P
against S[2, 6] and against S[4, 8].

11

A right-to-left match with some extra knowledge about P can allow us to
shift P much further. In fact, s5 = G and G is not found in P . Therefore,
no string that includes G can match P . Thus, we can avoid comparing P to
S[2, 6], S[3, 7], S[4, 8] and S[5, 9]. Our next comparison will be:

S: A A T A G T G A T C G

P: A A T A t

By comparing s10 to p5, we immediately reject S[6, 10] = P . More importantly,
s10 = C and C is also not in P , so no substring including s10 can match P .

We have just discovered that S does not contain P using only two compar-
isons: p5 vs. s5 and p5 vs. s10, and scanning P to determine which characters
are present in it.

Idea 2: Bad character rule. Example above illustrates how Boyer-Moore
algorithm proceeds when pm 6= si+m when comparing P to S[i, i+m]. In a more
general case, si+m may be present in P at one or more positons. We compute
the requisite shift using a special helper function R.

Let R : Σ → {1, . . .m} be defined as follows: R(x) is the position of the
rightmost occurrence of x in P . R(x) = 0 if x does not occur in P .

Example. Let Σ = {A, T, C, G} and let P =AATATTGAT. Then, R is defined
as follows:

R(A) = 8; R(T) = 9
R(C) = 0; R(G) = 7

R(x) can be precomputed in linear time (O(m + K)) using the following
straightforward algorithm:

Algorithm ComputeR(P ,m,Σ,K)
begin

for i = 1 to K do
R[ai] = 0;

end for
for i = 1 to m do
R[P [i]] = i;

end for
return R;

end

R values are used in the bad character shift rule.

Let P be aligned against S[i, i + m] and let, for some j < m, pj+1 . . . pm =
si+j+1 . . . si+m, and pj 6= si+j . Then, P can be shifted by max(1, j − R(si+j)
places to the right, i.e., we can shift P in a way, that would align si+j with the
rightmost appearance of the same character in P .

Example. Consider the situation below.

S: A T G A C T G C A T A A T G

P: A G C t C A

12

p4 = T is mismatched against s7 = G, while p5 = s8 and p6 = s9. R(T) = 2,
j = 4, and max(1, j−R(T)) = 2, i.e, the next shift that needs to be considered,
is the one, that aligns p2 = G with s7:

S: A T G A C T G C A T A A T G

P: A G C t C A

P: A G C T C A

On the other hand, if the rightmost occurence of the ”bad” character over-
shoots the current position, we shift only by one position, as illustrated below:

S: A T T G A T T A A T A G

P: T c T T A

Here, p2 6= s5, but p3 = s6, p4 = s7 and p5 = s8. s5 = A, but in P , R(A) = 5,
i.e., A appears as the last character in P , and it is currently to the right of s5.
We would like to align s5 with the closest A in P (if any), but we do not know

where any other As are. Because of this, we prefer a conservative shift by one
position to the right:

S: A T T G A T T A A T A G

P: T c T T A

P: T C T T A

Idea 3. Good suffix rule. Let P be matched against S[i, i + m], let, for
some j < m, pj+1 . . . pm = si+j+1 . . . si+m, but pj 6= si+j .

The substring P ′ = pj+1 . . . pm is called the good suffix, because we were able
to successfully match it against a substring in S.

If there is another occurrence of the sequence of P ′ in P , to the left of the

suffix occurrence of P ′, we can shift P to align that occurrence of P ′ with

si+j+1 . . . si+m.

Example. Consider P =ATACGTACTTAC and consider the following alignment:

S: T G T A G A T A A G T A C T T A C T A C G T C G A

P: G T A C T T A C t T A C

* * * ^

P is matched against S[2, 13] and, the good suffix of P is p10p11p12 = TAC.
p9 = T is mismatched with s10 = G. We notice that TAC occurs in P in a
substring p6p7p8. We can now shift P in a way that preserves the good suffix
alignment against S:

S: T G T A G A T A A G T A C T T A C T A C G T C G A

P: G T A C T T A C T T A C

P: G T A C T T A C T T A C

* * *

A strong good suffix rule can go even further, and search for an occurrence
of the good suffix, prefaced with a different character. In the example above
p5 = p9 = T is the character that prefaces the rightmost occurence of the
good suffix, and the next occurrence to the left. But we already know that T

13

positioned against s10 is a mismatch, so there is no need to attempt aligning
p6p7p8 against s11s12s13. Instead, we can look further left to see if another
occurrent of TAC exists, prefaced with anything other than a T . In our example,
p2p3p4 = TAC and p1 = G, so we can, indeed, attempt to align p2p3p4 against
s11s12s13.

S: T G T A G A T A A G T A C T T A C T T A C G T C G A

P: G T A C T T A C T T A C

P: G T A C T T A C T T A C

* * *

The good suffix rule heuristic can be precomputed using the following algo-
rithm.

Algorithm ComputeGoodSuffixShift(P ,m)
begin

π ← PrefixFunction(P, m);
P ′ = reverse(P);
π′ ← PrefixFunction(P ′, m);
for j = 0 to m do
GS[j]← m− π[m];

end for
for l = 1 to m do
j ← m− π′[l];
if GS[j] > l − π′[l] then
GS[j]← l− π′[l]

end if
end for
return GS;

end

Boyer-Moore Algorithm. Boyer-Moore Algorithm on each step tries to
align P and S left-to-right. When a mismatch occurs, bad character rule and
good suffix rule provide suggestions for the next shift. The higher of the two is
chosen.

Algorithm Boyer-Moore(S, n,P ,m,Σ, K)
begin

R← ComputeR(P, m);
GS ← ComputeGoodSuffixShift(P, m);
s← 0;
while s ≤ n−m do
j ← m; //right-to-left scan

while j > 0 and P [j] = S[s + j] do j ← j − 1;
if j = 0 then
output s;
s← s + GS[0];

else
s← max(GS[j], j −R[S[s + j]]);

end while
end

14

Gusfield’s Z Algorithm

Dan Gusfield proposed a very elegant exact string matching algorithm [2].

Z function. Given a string S = s1 . . . si . . . sn, Zi(S) = k is the length of the

longest prefix s1 . . . sk that matches a a substring si . . . si+k.

Gusfield has shown that Zi scores can be computed in O(n) time.

Exact string matching using Zi scores. Let P = p1 . . . pm be a pattern
string and S = s1 . . . sn be the query string. Consider a string Q = P$S where
”$” is a symbol not found in either P or S.

We find all valid shifts of P in S by computing Zi(Q) for all i = 1, . . . n+m+1.

We note the following:

• Because ”$” is not found neither P nor S, Zi(Q) ≤ m for i > m + 1, i.e,
no substring in S can have a prefix from Q that goes beyond P .

• Any time Zi(Q) = m for i > m + 1, we are documenting an occurrence of
P in S starting with position i−m− 1.

The algorithm then, computes Zi(Q) scores for i = 1 . . .m+n+1 and reports
all positions i (as i−m− 1) such that Zi(Q) = m.

References

[1] Robert S. Boyer, J. Strother Moore (1977), A Fast String Searching Algo-
rithm, Communications of the ACM, Vol. 20, No. 10, pp. 762-772, October
1977.

[2] Dan Gusfield (1997), Algorithms on Strings, Trees, and Sequences - Com-

puter Science and Computational Biology, Cambridge University Press,
1997.

[3] Donald E. Knuth, James H. Morris, Vaughan R. Pratt, (1977), Fast Pat-
tern Matching in Strings, SIAM Jorunal on Computing, Volume 6, pp.
323-350, 1977.

[4] Gonzalo Navarro, (2001), A Guided Tour to Approximate String Match-
ing, ACM Computing Surveys, Vol. 33, No. 1, pp. 31–88, March, 2001.

15

