Dynamic Programming for Bioinformatics.

Longest Common Subsequence

Subsequence. Given a string $S=s_{1} s_{2} \ldots s_{n}$, a subsequence of S is any string $P=p_{1} \ldots p_{k}$, such that:

1. For all $1 \leq i \leq k, p_{i}=s_{j}$ for some $j>0$;
2. If p_{i} is s_{j} and p_{i+1} is s_{l}, then $l>j$.

Informally, a subsequence P of string S can be obtained by removing zero or more characters from S and preserving the order of the characters not removed.

Example. Let $S=A T C A T T C G C$. Then, $A T C, A A T, A T A T G$ and $C C C G$ are all subsequences of S, while $A A A, A T T A$ and $C C T$ are not.

Longest Common Subsequence (LCS) Problem. The Longest Common Subsequence (LCS) problem is specified as follows: given two strings S and T, find the longest string P which is a substring for both S and T.

Brute-Force Solution.

A naïve algorithm for solving LCS is:

1. Enumerate all possible subsequences of S.
2. For each subsequence of S check if it is also a subsequence of T.
3. Keep track of the longest common subsequence found and its length.

Analysis. A string $S=s_{1} \ldots s_{n}$ has 2^{n} possible subsequences (each subsequence is essentially a choice of which characters are in and which characters are out). Some of these subsequences are not unique, but in a brute-force algorithm, there is no way to know that ahead of time. Checking if a string $T=t_{1} \ldots t_{m}$ contains a subsequence $P=p_{1} \ldots p_{k}$ can be done in $O(m+k)=O(m)$ (if $k>m$, the answer is an automatic "no") time. Thus, the overall complexity of the brute-force algorithm is $O\left(m 2^{n}\right)$.

Characterization of a Longest Common Subsequence

To help us develop an efficient algorithm for LCS, we need to be able to understand what a longest common subsequence of two sequences looks like. The following theorem provides the key idea for an efficient algorithm:

Theorem. Let $S=s_{1} \ldots s_{n}$ and $T=t_{1} \ldots t_{m}$ be two strings and let $P=$ $p_{1} \ldots p_{k}$ be their longest common subsequence. Then:

1. if $s_{n}=t_{m}$, then $p_{1} \ldots p_{k-1}$ is the longest common subsequence of $s_{1} \ldots s_{n-1}$ and $t_{1} \ldots t_{m-1}$;
2. if $s_{n} \neq t_{m}$ and $p_{k} \neq s_{n}$, then P is the longest common subsequence of $s_{1} \ldots s_{n-1}$ and T.
3. if $s_{n} \neq t_{m}$ and $p_{k} \neq t_{m}$, then P is the longest common subsequence of S and $t_{1} \ldots t_{m-1}$.

Given $S=s_{1} \ldots s_{n}$ and $T=t_{1} \ldots t_{m}$, let $c[i, j]$ (for $1 \leq i \leq n$ and $1 \leq j \leq m$) represent the length of the maximal longest subsequence of $s_{1} \ldots s_{i}$ and $t_{1} \ldots t_{j}$. For the sake of consistency we set $c[0,0]=0$.

The theorem suggests the following approach to determining the length of the LCS of S and T :

- Build the matrix $c[i, j]$ from $c[0,0]$ all the way to $c[n, m] . c[n, m]$ will contain the length of the LCS of S and T.
- Make sure that the construction of the matrix allows for a fast determination of the actual LCS.

Building the matrix $c[i, j]$. Using the theorem above, we can derive the following about $c[i, j]$:

- if $s_{i}=t_{j}$ then $c[i, j]=c[i-1, j-1]+1$.

If the two last characters of the substrings agree, then the LCS extends to include this character.

- if $s_{i} \neq t_{j}$ then $c[i, j]=\max (c[i, j-1], c[i-1, j])$.

Essentially, if the last characters of the substring differ, then the LCS of $s_{1} \ldots s_{i}$ and $t_{1} \ldots t_{j}$ is also the LCS of one of the two strings and the other string without the last character.

We represent this formally as the following recurrence relation:

$$
c[i, j]=\left\{\begin{array}{cr}
0 & \text { if } i=j=0 \\
c[i-1, j-1]+1 & \text { if } i, j>0 ; s_{i}=t_{j} \\
\max (c[i, j-1], c[j, i-1]) & \text { if } i, j>0 ; s_{i} \neq t_{j}
\end{array}\right.
$$

Essentially, $c[i, j]$ can be determined if we know the values in the following cells: $c[i-1, j-1], c[i, j-1]$ and $c[i-1, j]$. We can set $c[0, j]=0$ and $c[i, 0]=0$ for all $1 \leq j \leq m$ and $1 \leq i \leq n$. This makes it possible to compute $c[1,1]$, which, in turn, makes it possible to compute $c[1,2]$ and $c[2,1]$, and so on.
"Remembering" the LCS. On each step (i, j) of computation of $c[i, j]$, we can determine which of the three cells $c[i-1, j-1]$ (diagonally above and to the left), $c[i, j-1]$ (to the left) or $c[i-1, j]$ (above) is the one whose value is used in computing $c[i, j]$.

We create a table $u[i, j]$. In cell $s[i, j]$ we store the "pointer" to the cell from which $c[i, j]$ was constructed. We use symbols \leftarrow, \uparrow and \nwarrow to denote the following cases:

$u[i, j]$ Symbol	s_{i} vs. $\quad t_{j}$	Table condition
\nwarrow	$s_{i}=t_{j}$	N/A
\uparrow	$s_{i} \neq t_{j}$	$c[i-1, j] \geq c[i, j-1]$
\leftarrow	$s_{i} \neq t_{j}$	$c[i, j-1]>c[i-1, j]$

Proposition. There is a path from $s[n, m]$ to $s[0,0]$. The LCS of $S=s_{1} \ldots s_{n}$ and $T=t_{1} \ldots t_{m}$, given a constructed matrix $u[i, j]$ can be found by combining all s_{i} characters for all locations $[i, j]$, where $u[i, j]=\nwarrow$.

Dynamic Programming Algorithm for LCS

To find the LCS of two strings, we need to construct the two matrices: $c[i, j]$ and $s[i, j]$. The following iterative version of the algorithm can do it.

```
Algorithm \(\operatorname{LCS}\left(S=s_{1} \ldots s_{n}, T=t_{1} \ldots t_{m}\right)\)
begin
    declare \(c[0 . . n, 0 . . m]\);
    declare \(u[0 . . n, 0 . . m]\);
    for \(i=0\) to \(n\) do
        \(c[i, 0]:=0 ;\)
    end for
    for \(j=1\) to \(m\) do
        \(c[0, j]:=0 ;\)
    end for
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(m\) do
            if \(s_{i}=t_{j}\) then
                \(c[i, j]:=c[i-1, j-1]+1 ;\)
            \(u[i, j]:=\nwarrow ;\)
            else
                if \(c[i-1, j] \geq c[i, j-1]\) then
                    \(c[i, j]:=c[i-1, j] ;\)
                        \(u[i, j]:=\uparrow\);
            else
                        \(c[i, j]:=c[i, j-1] ;\)
                        \(u[i, j]:=\leftarrow\);
                end if
            end if
        end for
    end for
    LCSLength: \(=c[n, m]\);
    \(\mathrm{LCS}:=\operatorname{LCSRecover}(S, T, u[])\);
    return (LCS, LCSLength);
end
```

The algorithm LCSRecover takes as input two strings, S and T^{1} and the matrix $u[i, j]$ that encodes how $c[i, j]$ was filled, and returns back the LCS of S and T. The algorithm works as follows (in the algorithm below, + on string values is a concatenation operation).

```
\(\operatorname{Algorithm} \operatorname{LCSREcover}\left(S=s_{1} \ldots s_{n}, T=t_{1} \ldots t_{n}, u[0 . . n, 0 . . m]\right)\)
begin
    \(P:="\);
    \(i:=n\);
    \(j:=m\);
    \(P:=s_{i}+P\);
    while \(i>0\) and \(j>0\) do
        if \(u[i, j]=\nwarrow\) then
            \(P:=s_{i}+P ;\)
            \(i:=i-1\);
            \(j:=j-1 ;\)
        else
            if \(u[i, j]=\leftarrow\) then
                \(j:=j-1 ;\)
            else \(\quad / / \mathrm{u}[\mathrm{i}, \mathrm{j}]=\uparrow\)
                \(i:=i-1 ;\)
            end if
        end if
    end while
    return \(P\);
end
```

Analysis. Algorithm LCS contains a double nested loop that iterates $n \cdot m$ times. Each loop iteration completes in $O(1)$.

On each step of the main loop of the algorithm LCSRecover either i or j gets decreased (and on some steps, both i and j are decreased). This means that the main loop of LCSRecover runs no more than $m+n$ times, and the algorithm itself has $O(m+n)$ runtime complexity.

As a result, algorithm LCS has $O(n m)+O(n+m)=O(n m)$ runtime complexity.

Edit Distance

Edit Distance. Given two strings $S=s_{1} \ldots s_{n}$ and $T=t_{1} \ldots t_{m}$, the edit distance between S and T is defined as the smallest number of atomic edit operations necessary to transform S into T. The atomic edit operations are

- Character insertion. An insertion of a single character from the alphabet into any position in the string.
- Character deletion. A removal of any character from the string.
- Character replacement. A replacement of any character in the string with another character from the alphabet.

[^0]Example. Given a word "cat", the following words have an edit distance of 1 from it:

- "at", obtained from "cat" by deleting its first character:

cat

X | 1
_at

- "cast", obtained from "cat" by inserting a character "s" into the third position of the string:

```
ca_t
| |X |
cast
```

- "vat", obtained from "cat" by replacing the first character with "v":

cat
 X||
 vat

Computing the Edit Distance. We want to develop a dynamic programming algorithm for computing the edit distance. In preparation for this, we will consider using a data structure similar to the one we used when solving the LCS problem.

Let $c[i, j]$ be the edit distance between the prefixes $S_{i}=s_{1} \ldots s_{i}$ and $T_{j}=$ $t_{1} \ldots t_{j}$ of the strings S and T. Our algorithm will construct the table $c[i, j]$. When completed, $c[n, m]$ will contain the edit distance between S and T.

The construction of $c[i, j]$ is guided by the following observations:

- $c[0,0]=0$. For the sake of consistency, S_{0} and T_{0} are empty strings. The edit distance between two empty strings is 0 .
- $c[0, j]=j$ for all $1 \leq j \leq m$. The edit distance between an empty string and any non-empty string of length j is j : the string can be constructed via j consecutive insertions.
- $c[i, 0]=i$: see above (the empty string is constructed from $s_{1} \ldots s_{i}$ via i consecutive deletions).
- If $s_{i}=t_{j}$, then $c[i, j]=c[i-1, j-1]$. If the last characters of the two prefixes coincide, then the edit distance between them is the same as the edit distance between the prefixes without the last characters.
- If $s_{i} \neq t_{j}$, then an atomic edit is needed to match the last characters of the strings S_{i} and T_{j}. We must select one of the three possible atomic edits (insertion, deletion, or replacement). When selecting which one to use, we basically are reducing computing the edit distance between S_{i} and T_{j} to:

1. computing the edit distance between S_{i-1} and T_{j-1} if replacement is chosen.
2. computing the edit distance between S_{i-1} and T_{j} if deletion is chosen.
3. computing the edit distance between S_{i} and T_{j-1} if insertion is chosen.

These insights can be properly encoded as follows:

$$
c[i, j]=\left\{\begin{array}{rr}
0 & \text { if } i=j=0 \\
i & \text { if } j=0 \\
\text { if } i=0 \\
j & \text { if } i, j \geq 1 \text { and } s_{i}=t_{j} \\
c[i-1, j-1] & \text { if } i, j \geq 1 \text { and } s_{i} \neq t_{j}
\end{array}\right.
$$

Algorithm for Edit Distance Computation

Using the formula derived above, we can write the following algorithm for computing the table $c[i, j]$. The algorithm returns $c[n, m]$, which contains the edit distance between the input strings S and T.

```
\(\operatorname{Algorithm} \operatorname{EditDistance}\left(S=s_{1} \ldots s_{n}, T=t_{1} \ldots t_{m}\right)\)
begin
    declare \(c[0 . . n, 0 . . m]\);
    for \(i=0\) to \(n\) do
        \(c[i, 0]:=0 ;\)
    end for
    for \(j=1\) to \(m\) do
        \(c[0, j]:=0\);
    end for
    for \(i=1\) to \(n\) do
        for \(j=1\) to \(m\) do
            if \(s_{i}=t_{j}\) then
                \(c[i, j]:=c[i-1, j-1] ;\)
            else
                \(c[i, j]:=\min (c[i-1, j], c[i, j-1], c[i-1, j-1])+1 ;\)
            end if
        end for
    end for
    return \(c[n, m]\);
end
```

Analysis. The double nested loop executes $n \cdot m$ times. Each iteration runs in $O(1)$. Therefore, the algorithmic complexity of the EditDistance algorithm is $O(n m)$.

[^0]: ${ }^{1}$ It actually needs only one string, since it returns the common sequence.

