
. .
CSC 448 Bioinformatics Algorithms Alexander Dekhtyar
. .

Dynamic Programming for Bioinformatics. . .

Longest Common Subsequence

Subsequence. Given a string S = s1s2 . . . sn, a subsequence of S is any string
P = p1 . . . pk, such that:

1. For all 1 ≤ i ≤ k, pi = sj for some j > 0;

2. If pi is sj and pi+1 is sl, then l > j.

Informally, a subsequence P of string S can be obtained by removing zero or
more characters from S and preserving the order of the characters not removed.

Example. Let S = ATCATTCGC. Then, ATC, AAT , ATATG and CCCG

are all subsequences of S, while AAA, ATTA and CCT are not.

Longest Common Subsequence (LCS) Problem. The Longest Common

Subsequence (LCS) problem is specified as follows: given two strings S and T ,
find the longest string P which is a substring for both S and T .

Brute-Force Solution.

A näıve algorithm for solving LCS is:

1. Enumerate all possible subsequences of S.

2. For each subsequence of S check if it is also a subsequence of T .

3. Keep track of the longest common subsequence found and its length.

Analysis. A string S = s1 . . . sn has 2n possible subsequences (each subse-
quence is essentially a choice of which characters are in and which characters are
out). Some of these subsequences are not unique, but in a brute-force algorithm,
there is no way to know that ahead of time. Checking if a string T = t1 . . . tm
contains a subsequence P = p1 . . . pk can be done in O(m + k) = O(m) (if
k > m, the answer is an automatic ”no”) time. Thus, the overall complexity of
the brute-force algorithm is O(m2n).

1

Characterization of a Longest Common Subsequence

To help us develop an efficient algorithm for LCS, we need to be able to un-
derstand what a longest common subsequence of two sequences looks like. The
following theorem provides the key idea for an efficient algorithm:

Theorem. Let S = s1 . . . sn and T = t1 . . . tm be two strings and let P =
p1 . . . pk be their longest common subsequence. Then:

1. if sn = tm, then p1 . . . pk−1 is the longest common subsequence of s1 . . . sn−1

and t1 . . . tm−1;

2. if sn 6= tm and pk 6= sn, then P is the longest common subsequence of
s1 . . . sn−1 and T .

3. if sn 6= tm and pk 6= tm, then P is the longest common subsequence of
S and t1 . . . tm−1.

Given S = s1 . . . sn and T = t1 . . . tm, let c[i, j] (for 1 ≤ i ≤ n and 1 ≤ j ≤ m)
represent the length of the maximal longest subsequence of s1 . . . si and t1 . . . tj .
For the sake of consistency we set c[0, 0] = 0.

The theorem suggests the following approach to determining the length of the
LCS of S and T :

• Build the matrix c[i, j] from c[0, 0] all the way to c[n, m]. c[n, m]
will contain the length of the LCS of S and T .

• Make sure that the construction of the matrix allows for a fast

determination of the actual LCS.

Building the matrix c[i, j]. Using the theorem above, we can derive the
following about c[i, j]:

• if si = tj then c[i, j] = c[i− 1, j − 1] + 1.

If the two last characters of the substrings agree, then the LCS extends
to include this character.

• if si 6= tj then c[i, j] = max(c[i, j − 1], c[i− 1, j]).

Essentially, if the last characters of the substring differ, then the LCS of
s1 . . . si and t1 . . . tj is also the LCS of one of the two strings and the other
string without the last character.

We represent this formally as the following recurrence relation:

c[i, j] =

0 if i = j = 0;
c[i− 1, j − 1] + 1 if i, j > 0; si = tj ;

max(c[i, j − 1], c[j, i− 1]) if i, j > 0; si 6= tj

Essentially, c[i, j] can be determined if we know the values in the following
cells: c[i−1, j−1], c[i, j−1] and c[i−1, j]. We can set c[0, j] = 0 and c[i, 0] = 0
for all 1 ≤ j ≤ m and 1 ≤ i ≤ n. This makes it possible to compute c[1, 1],
which, in turn, makes it possible to compute c[1, 2] and c[2, 1], and so on.

2

”Remembering” the LCS. On each step (i, j) of computation of c[i, j], we
can determine which of the three cells c[i − 1, j − 1] (diagonally above and to
the left), c[i, j − 1] (to the left) or c[i − 1, j] (above) is the one whose value is
used in computing c[i, j].

We create a table u[i, j]. In cell s[i, j] we store the ”pointer” to the cell
from which c[i, j] was constructed. We use symbols ←, ↑ and տ to denote the
following cases:

u[i, j] Symbol si vs. tj Table condition

տ si = tj N/A
↑ si 6= tj c[i− 1, j] ≥ c[i, j − 1]
← si 6= tj c[i, j − 1] > c[i− 1, j]

Proposition. There is a path from s[n, m] to s[0, 0]. The LCS of S = s1 . . . sn

and T = t1 . . . tm, given a constructed matrix u[i, j] can be found by combining
all si characters for all locations [i, j], where u[i, j] =տ.

Dynamic Programming Algorithm for LCS

To find the LCS of two strings, we need to construct the two matrices: c[i, j]
and s[i, j]. The following iterative version of the algorithm can do it.

Algorithm LCS(S = s1 . . . sn, T = t1 . . . tm)
begin

declare c[0..n, 0..m];
declare u[0..n, 0..m];
for i = 0 to n do
c[i, 0] := 0;

end for
for j = 1 to m do
c[0, j] := 0;

end for
for i = 1 to n do
for j = 1 to m do
if si = tj then

c[i, j] := c[i− 1, j − 1] + 1;
u[i, j] :=տ;

else
if c[i− 1, j] ≥ c[i, j − 1] then
c[i, j] := c[i− 1, j];
u[i, j] :=↑;

else
c[i, j] := c[i, j − 1];
u[i, j] :=←;

end if
end if

end for
end for
LCSLength:= c[n, m];
LCS:= LCSRecover(S, T , u[]);
return (LCS, LCSLength);

end

3

The algorithm LCSRecover takes as input two strings, S and T 1 and the
matrix u[i, j] that encodes how c[i, j] was filled, and returns back the LCS of
S and T . The algorithm works as follows (in the algorithm below, + on string
values is a concatenation operation).

Algorithm LCSREcover(S = s1 . . . sn, T = t1 . . . tn, u[0..n, 0..m])
begin

P := ””;
i := n;
j := m;
P := si + P ;
while i > 0 and j > 0 do
if u[i, j] =տ then
P := si + P ;
i := i− 1;
j := j − 1;

else
if u[i, j] =← then

j := j − 1;
else // u[i,j] = ↑

i := i− 1;
end if

end if
end while
return P ;

end

Analysis. Algorithm LCS contains a double nested loop that iterates n · m

times. Each loop iteration completes in O(1).

On each step of the main loop of the algorithm LCSRecover either i or j gets
decreased (and on some steps, both i and j are decreased). This means that the
main loop of LCSRecover runs no more than m + n times, and the algorithm
itself has O(m + n) runtime complexity.

As a result, algorithm LCS has O(nm) + O(n + m) = O(nm) runtime com-
plexity.

Edit Distance

Edit Distance. Given two strings S = s1 . . . sn and T = t1 . . . tm, the edit
distance between S and T is defined as the smallest number of atomic edit

operations necessary to transform S into T . The atomic edit operations are

• Character insertion. An insertion of a single character from the alphabet
into any position in the string.

• Character deletion. A removal of any character from the string.

• Character replacement. A replacement of any character in the string with
another character from the alphabet.

1It actually needs only one string, since it returns the common sequence.

4

Example. Given a word "cat", the following words have an edit distance of
1 from it:

• "at", obtained from "cat" by deleting its first character:

cat

X||

_at

• "cast", obtained from "cat" by inserting a character "s" into the third

position of the string:

ca_t

||X|

cast

• "vat", obtained from "cat" by replacing the first character with "v":

cat

X||

vat

Computing the Edit Distance. We want to develop a dynamic programming

algorithm for computing the edit distance. In preparation for this, we will
consider using a data structure similar to the one we used when solving the LCS

problem.

Let c[i, j] be the edit distance between the prefixes Si = s1 . . . si and Tj =
t1 . . . tj of the strings S and T . Our algorithm will construct the table c[i, j].
When completed, c[n, m] will contain the edit distance between S and T .

The construction of c[i, j] is guided by the following observations:

• c[0, 0] = 0. For the sake of consistency, S0 and T0 are empty strings. The
edit distance between two empty strings is 0.

• c[0, j] = j for all 1 ≤ j ≤ m. The edit distance between an empty string
and any non-empty string of length j is j: the string can be constructed
via j consecutive insertions.

• c[i, 0] = i: see above (the empty string is constructed from s1 . . . si via i

consecutive deletions).

• If si = tj , then c[i, j] = c[i − 1, j − 1]. If the last characters of the two
prefixes coincide, then the edit distance between them is the same as the
edit distance between the prefixes without the last characters.

• If si 6= tj , then an atomic edit is needed to match the last characters of
the strings Si and Tj . We must select one of the three possible atomic
edits (insertion, deletion, or replacement). When selecting which one to
use, we basically are reducing computing the edit distance between Si and
Tj to:

5

1. computing the edit distance between Si−1 and Tj−1 if replacement is
chosen.

2. computing the edit distance between Si−1 and Tj if deletion is chosen.

3. computing the edit distance between Si and Tj−1 if insertion is cho-
sen.

These insights can be properly encoded as follows:

c[i, j] =

0 if i = j = 0
i if j = 0
j if i = 0

c[i− 1, j − 1] if i, j ≥ 1 and si = tj
min(c[i− 1, j − 1], c[i− 1, j], c[i, j − 1]) + 1 if i, j ≥ 1 and si 6= tj

Algorithm for Edit Distance Computation

Using the formula derived above, we can write the following algorithm for com-
puting the table c[i, j]. The algorithm returns c[n, m], which contains the edit
distance between the input strings S and T .

Algorithm EditDistance(S = s1 . . . sn, T = t1 . . . tm)
begin

declare c[0..n, 0..m];
for i = 0 to n do
c[i, 0] := 0;

end for
for j = 1 to m do
c[0, j] := 0;

end for
for i = 1 to n do
for j = 1 to m do
if si = tj then

c[i, j] := c[i− 1, j − 1];
else

c[i, j] := min(c[i− 1, j], c[i, j − 1], c[i− 1, j − 1]) + 1;
end if

end for
end for
return c[n, m];

end

Analysis. The double nested loop executes n ·m times. Each iteration runs
in O(1). Therefore, the algorithmic complexity of the EditDistance algorithm is
O(nm).

6

