
. .
CSC 448 Bioinformatics Algorithms Alexander Dekhtyar
. .

Dynamic Programming for Bioinformatics. . .

Global Sequence Alignment

Sequence Alignment. In bioinformatics, sequence alignment is the ar-
rangement of two (or more) DNA sequences in either nucleotide or amino acid
alphabets that identifies similarity between the sequences that may be a con-
sequence of functional, structural or evolutionary relationships between the se-
quences1.

Global Sequence Alignment. Global sequence alignment is the align-
ment of two (or more) sequences that attempts to align every single position in
one sequence against every single position in the other sequence(s).

Global sequence alignment is usually used whenever the sequences in-
volved are of similar length and are expected to be similar in all regions.

General global sequence alignment problem for two sequences. Given
two DNA sequences S and T in either the nucleotide or amino acid alphabet,
determine the best global alignment between them.

Needed to resolve:

• Formal definition of alignment.

• Criteria for best alignmnent determination.

Formal definition. Let S = s1 . . . sn and T = t1 . . . tm are two strings (se-
quences). An alignment a(S, T) is a set of pairs {(x1, y1), . . . (xk, yk)}, such
that:

1. k ≤ m + n

2. xi = sj for some 1 ≤ j ≤ n, or xi = ” ”.

3. yi = tj for some 1 ≤ j ≤ m, or yi = ” ”.

4. for a pair (xi, yi), either xi 6= ” ” or yi 6= ” ”.

1http://en.wikipedia.org/wiki/Sequence alignment.

1

5. The sequence x1 . . . xk with all ” ” characters removed is S.

6. The sequence y1 . . . yk with all ” ” characters removed is S.

Identifying Similarity Between Sequences

In general, an instance of the global alignment problem must consider the four
cases of aligning a specific character of one sequence to a character of another
sequence:

1. alignment: the character in string S is aligned with the same character in
string T ;

2. replacement: the character in S is aligned with a different character in
T ;

3. deletion: the character in S is NOT aligned with any character in T (es-
sentially, removed from alignment);

4. insertion: a character from T is NOT aligned with any character in S

(essentially, it was inserted).

Given an alignment a(S, T) = {(x1, y1), . . . (xk, yk)}, we associate with each
pair (xi, yi) of aligned characters its score score(xi, yi):

• Higher scores: better alignment.

• Lower scores: poorer alignment.

The total score of an alignment is defined as the sum of all pairwise scores:

Score(a(S, T)) =
k

∑

i=1

score(xi, yi).

Example. The edit distance problem is an instance of a global alignment
problem where the following scoring mechanism is established.

1. matching a character in a position has a score of 0;

2. replacing a character has a score of -1;

3. deleting a character has a score of -1;

4. inserting a character has a score of -1.

Scoring function (scoring matrix, substitution matrix). Let Σ be an
alphabet, and ” ” 6∈ Σ. Let Σ′ = Σ ∪ {” ”}. A function

score : Σ′ × Σ′ →R

which matches each pair of characters in σ′ to a numeric score is called a scoring
function or a scoring matrix.

In bioinformatics, two different alphabets are used in sequence alignment
problems: the nucleotide alphabet and the amino acid alphabet.

2

Substitution matrices for nucleotide alphabet. For the nucleotide alpha-

bet, usually, only two numbers are specified: one for the cost of a match, and one
for the cost of mismatch/deletion/insertion. For global alignment, the following
two variants can be used:

A T C G
A 1 0 0 0 0
T 0 1 0 0 0
C 0 0 1 0 0
G 0 0 0 1 0

0 0 0 0 −∞

A T C G
A 5 -4 -4 -4 -4
T -4 5 -4 -4 -4
C -4 -4 5 -4 -4
G -4 -4 -4 5 -4

-4 -4 -4 -4 −∞

Substitution matrices for amino acid alphabet. There are two families
of matrices, known as PAM (Point Accepted Mutation) and BLOSUM (BLOcks
of amino acid SUbstitution Matrix), that use changes in amino acid structure in
knows sequence collections and use somewhat different means of estimating the
likliehood of a replacement. More probable replacements score higher, less prob-
ably replacements score lower. (See a separate handout for more information
on the PAM and BLOSUM matrices and their most popular versions).

NeedlemanWunsch algorithm for Global Alignment

Problem. Given two strings S = s1 . . . sn and T = t1 . . . tm and a substitution
matrix score[i, j], return an alignment a(S, T) with the highest total score.

Needleman-Wunsch algorithm. Needlman-Wunsch algorithm, proposed in
1970 is a dynamic programming algorithm that, essentially extends the edit
distance algorithm (and the LCS algorithm).

The algorithm works in two steps:

1. Compute table c[i, j] of the total score of matching prefixes Si and Tj for
each pair (i, j).

2. Compute the global alignment from the information in c[i, j].

Note. In most subsitution matrices, the cost of an insertion/deletion does not
depend on which character is being inserted/deleted, i.e., cost[, y] and cost[x,]
are the same for all x, y ∈ Σ. Let cost[x,] = cost[, y] be denoted as d.

Recurrence for c[i, j] . For 0 ≤ i ≤ n and 0 ≤ j ≤ m, c[i, j] can be defined
as follows:

c[i, j] =

d · j if i = 0;
d · i if j = 0;

max(c[i, j − 1] + d, c[j, i− 1] + d, c[i− 1, j − 1] + score[si, tj]) if i, j > 0.

The pseudocode for the Needleman-Wunsch algorithm shown below, fills two
matrices: c[i, j] as described above, and u[i, j]: the matrix that contains infor-
mation about the best alignment. u[i, j] ∈ {տ,←, ↑}.

3

Algorithm NWGlobalAlign(S = s1 . . . sn, T = t1 . . . tm, score[], d)
begin

declare c[0..n, 0..m];
declare u[0..n, 0..m];
for i = 0 to n do
c[i, 0] := d · i;

end for
for j = 1 to m do
c[0, j] := d · j;

end for
for i = 1 to n do
for j = 1 to m do

Replace := c[i− 1, j − 1] + score[si, tj];
Insert := c[i, j − 1] + d;
Delete := c[i− 1, j] + d;
c[i, j] := max(Replace, Insert, Delete);
if c[i,j] = Replace then

u[i,j]:= տ;
else if c[i, j] = Insert then
u[i, j] :=←;

else if c[i, j] = Delete then
u[i, j] :=↑;

end if
end for

end for
AlignmentScore:= c[n, m];
Alignment:= AlignmentRecover(S, T , u[]);
return (Alignment);

end

The algorithm AlignmentRecover takes as input two strings, S and T and the
matrix u[i, j] that encodes how c[i, j] was filled, and returns back the alignment
of S and T . The algorithm works as follows.

4

Algorithm AlignmentRecover(S = s1 . . . sn, T = t1 . . . tn, u[0..n, 0..m])
begin

A := ∅;
i := n;
j := m;
while i + j > 0 do // keep building alignment until c[0,0] is reached

if u[i, j] =տ then // replacement

A := A ∪ {(si, tj)};
i := i− 1;
j := j − 1;

else if u[i, j] =← then // insertion

A := A ∪ {(” ”, tj)};
j := j − 1;

else // u[i,j] = ↑; deletion

A := A ∪ {(si, ” ”)};
i := i− 1;

end if
end while
return A;

end

Analysis. Algorithm NWGlobalAlign is essentially an extension of the LCS and
EditDistance algorithms. As such, its algorithmic complexity is O(mn).

5

