# Methods For Working With Time Series: Hidden Markov Models & More

Hunter Glanz

California Polytechnic State University San Luis Obispo

February 8, 2019

















2 Traditional Time Series Analysis

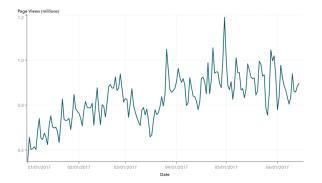
B Introduction to Hidden Markov Models



## What is a time series?

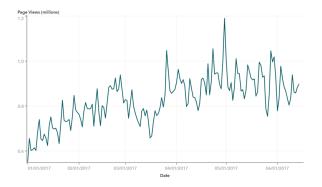


#### What is a time series?





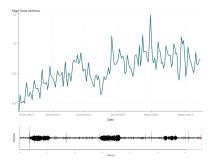
## What is a time series?



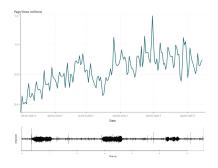
 time series: a series of data points indexed in time order; most commonly taken at successive equally spaced points in time.

4

SAN LUIS OBISPO

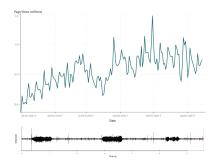






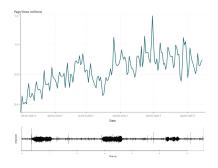
• Descriptive/Exploratory





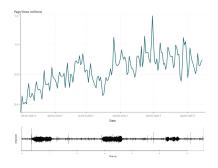
- Descriptive/Exploratory
- Curve Fitting/Function Approximation





- Descriptive/Exploratory
- Curve Fitting/Function Approximation
- Prediction/Forecasting





- Descriptive/Exploratory
- Curve Fitting/Function Approximation
- Prediction/Forecasting
- Segmentation/Classification





#### Introduction to Time Series

#### 2 Traditional Time Series Analysis

#### B Introduction to Hidden Markov Models



## STAT 416: Statistical Analysis of Time Series

Analysis and forecasting of a single quantitative variable (time series)



# STAT 416: Statistical Analysis of Time Series

Analysis and forecasting of a single quantitative variable (time series)

- Autocorrelation
- Autoregressive (AR) models
- Moving Average (MA) models
- ARMA & ARIMA models

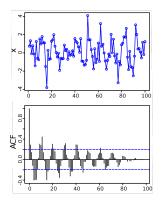




Correlation of a signal with a delayed copy of itself as a function of the delay



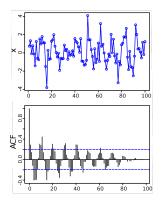
Correlation of a signal with a delayed copy of itself as a function of the delay



autocorrelation: similarity between observations as a function of the time lag between them

SAN LUIS OBISPO

Correlation of a signal with a delayed copy of itself as a function of the delay



- autocorrelation: similarity between observations as a function of the time lag between them
  CAL POLY
- What could you conclude from the graph of the ACFA LUIS OBISPO

## **Autoregressive Models**



#### **Autoregressive Models**

• Autoregressive model of order p; AR(p).

$$X_t = c + \sum_{i=1}^p \varphi_i X_{t-i} + \varepsilon_t$$



## **Autoregressive Models**

• Autoregressive model of order p; AR(p).

$$X_t = c + \sum_{i=1}^p \varphi_i X_{t-i} + \varepsilon_t$$

- How do we choose *p*?
- How do we estimate the  $\varphi$  coefficients?



### Moving Average Models



### **Moving Average Models**

• Moving Average model of order q; MA(q).  $X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta \varepsilon_{t-q}$ 



## **Moving Average Models**

- Moving Average model of order q; MA(q).  $X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta \varepsilon_{t-q}$
- How do we choose q?
- How do we estimate the  $\theta$  coefficients?



#### **ARMA and ARIMA Models**

• ARMA(p,q):

$$X_t = c + \varepsilon_t + \sum_{i=1}^p \varphi X_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$



#### **ARMA and ARIMA Models**

• ARMA(p,q):

$$X_t = c + \varepsilon_t + \sum_{i=1}^p \varphi X_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j}$$

- ARIMA(p, d, q):
  - p is the order of the AR part of the model
  - q is the order of the MA part of the model
  - *d* is the degree of differencing of the data values



# And Beyond!

#### • Other methods:

- spectral analysis
- wavelet analysis
- signal processing
- statistical and machine learning methods



# And Beyond!

#### • Other methods:

- spectral analysis
- wavelet analysis
- signal processing
- statistical and machine learning methods
- Python Implementations
  - Statsmodels
  - PyFlux
  - PyMC3





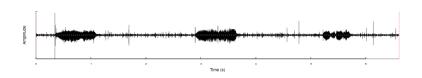


#### 2 Traditional Time Series Analysis





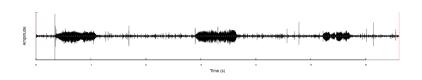
# Segmentation and Classification



• What if we're not interested in forecasting a quantitative value?



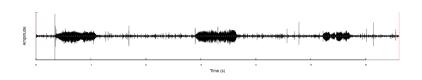
# Segmentation and Classification



- What if we're not interested in forecasting a quantitative value?
- Segmentation/Change-point detection



# Segmentation and Classification



- What if we're not interested in forecasting a quantitative value?
- Segmentation/Change-point detection
- Segmentation  $\implies$  Classification





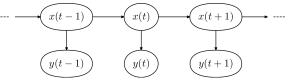
#### • Hidden Markov Models (HMMs):

- Fall under the umbrella of many different types of models
- Well summarized by the following image:



#### Hidden Markov Models (HMMs):

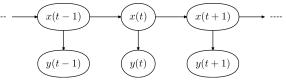
- Fall under the umbrella of many different types of models
- Well summarized by the following image:





#### Hidden Markov Models (HMMs):

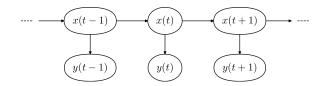
- Fall under the umbrella of many different types of models
- Well summarized by the following image:



• Dolphin/Whale calls; Keadle project

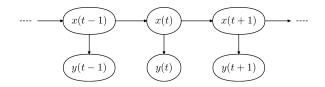


#### **Properties of HMMs**





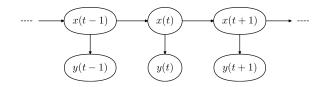
## **Properties of HMMs**



• Markov property: Conditional probability distribution of hidden variable, x(t) at time t, depends <u>only</u> on the value of the hidden variable x(t - 1)

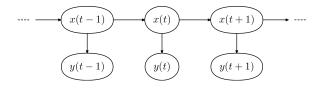


## **Properties of HMMs**

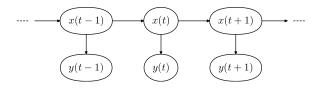


- Markov property: Conditional probability distribution of hidden variable, x(t) at time t, depends <u>only</u> on the value of the hidden variable x(t 1)
- Value of the observed variable y(t) depends <u>only</u> on the value of the hidden variable x(t)



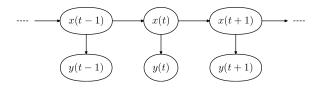






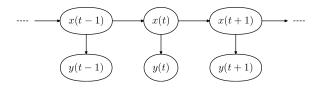
• Number of states





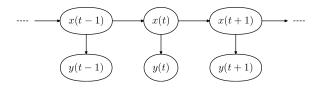
- Number of states
- Number of observations





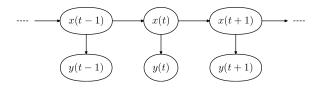
- Number of states
- Number of observations
- Emission probabilities





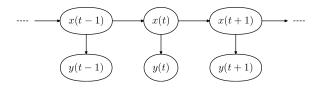
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$





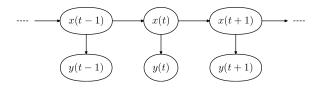
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities





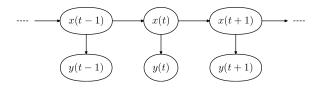
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities
  - $P(X_i|X_{i-1})$





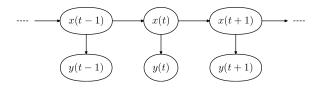
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities
  - $P(X_i|X_{i-1})$
- (Hidden) States





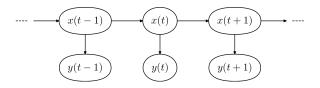
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities
  - $P(X_i|X_{i-1})$
- (Hidden) States
- Observations (data)





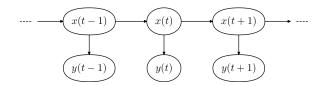
- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities
  - $P(X_i|X_{i-1})$
- (Hidden) States
- Observations (data)
- Probability distribution(s)



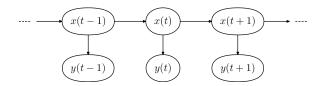


- Number of states
- Number of observations
- Emission probabilities
  - $P(Y_i|X_i)$
- Transition probabilities
  - $P(X_i|X_{i-1})$
- (Hidden) States
- Observations (data)
- Probability distribution(s)
- (Prior) Initial probabilities of states



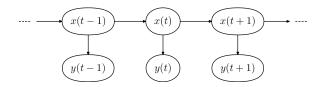






The States!!!

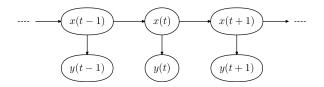




#### The States!!!

• How should we estimate the states?





#### The States!!!

- How should we estimate the states?
- Python Implementations
  - hmmlearn
  - seqlearn



## **HMM Inference**

• Two things we might be interested in:



# **HMM Inference**

- Two things we might be interested in:
  - Most likely sequence of hidden states (maximum a posteriori estimator)

$$\hat{X} = \operatorname*{argmax}_{X} P(X|Y)$$



# **HMM Inference**

- Two things we might be interested in:
  - Most likely sequence of hidden states (maximum a posteriori estimator)

$$\hat{X} = \operatorname*{argmax}_{X} P(X|Y)$$

• Centroid estimator (unconstrained)

$$\tilde{X}_i = \operatorname*{argmax}_{X_i \in S} P(X_i | Y)$$



## Maximum a Posteriori Estimator

- Small example...
- Viterbi Algorithm!



## **Centroid Estimator**

• Continuing our small example....





Questions?

