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What is a time series?

• time series: a series of data points indexed in time order;
most commonly taken at successive equally spaced points in
time.
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What Are We Interested In?

• Descriptive/Exploratory
• Curve Fitting/Function Approximation
• Prediction/Forecasting
• Segmentation/Classification
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STAT 416: Statistical Analysis of Time Series

Analysis and forecasting of a single quantitative variable (time series)

• Autocorrelation
• Autoregressive (AR) models
• Moving Average (MA) models
• ARMA & ARIMA models
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Autocorrelation

Correlation of a signal with a delayed copy of itself as a function of
the delay

• autocorrelation: similarity between observations as a
function of the time lag between them

• What could you conclude from the graph of the ACF?
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Autoregressive Models

• Autoregressive model of order p; AR(p).

Xt = c+

p∑
i=1

ϕiXt−i + εt

• How do we choose p?
• How do we estimate the ϕ coefficients?
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Moving Average Models

• Moving Average model of order q; MA(q).
Xt = µ+ εt + θ1εt−1 + · · ·+ θεt−q

• How do we choose q?
• How do we estimate the θ coefficients?
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ARMA and ARIMA Models

• ARMA(p, q):

Xt = c+ εt +

p∑
i=1

ϕXt−i +

q∑
j=1

θjεt−j

• ARIMA(p, d, q):
• p is the order of the AR part of the model
• q is the order of the MA part of the model
• d is the degree of differencing of the data values
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And Beyond!

• Other methods:
• spectral analysis
• wavelet analysis
• signal processing
• statistical and machine learning methods

• Python Implementations
• Statsmodels
• PyFlux
• PyMC3

12



And Beyond!

• Other methods:
• spectral analysis
• wavelet analysis
• signal processing
• statistical and machine learning methods

• Python Implementations
• Statsmodels
• PyFlux
• PyMC3

12



Outline

1 Introduction to Time Series

2 Traditional Time Series Analysis

3 Introduction to Hidden Markov Models

13



Segmentation and Classification

• What if we’re not interested in forecasting a quantitative
value?

• Segmentation/Change-point detection
• Segmentation =⇒ Classification
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Discrete Inference

• Hidden Markov Models (HMMs):
• Fall under the umbrella of many different types of models
• Well summarized by the following image:

• Dolphin/Whale calls; Keadle project
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Properties of HMMs

• Markov property: Conditional probability distribution of
hidden variable, x(t) at time t, depends only on the value of
the hidden variable x(t− 1)

• Value of the observed variable y(t) depends only on the
value of the hidden variable x(t)
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Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states

• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations

• Emission probabilities
• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities

• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States

• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)

• Probability distribution(s)
• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)

• (Prior) Initial probabilities of states

17



Characterizing HMMs

• Number of states
• Number of observations
• Emission probabilities

• P (Yi|Xi)

• Transition probabilities
• P (Xi|Xi−1)

• (Hidden) States
• Observations (data)
• Probability distribution(s)
• (Prior) Initial probabilities of states

17



What Are We Interested In?

The States!!!

• How should we estimate the states?
• Python Implementations

• hmmlearn
• seqlearn
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HMM Inference

• Two things we might be interested in:

• Most likely sequence of hidden states (maximum a posteriori
estimator)

X̂ = argmax
X

P (X|Y )

• Centroid estimator (unconstrained)

X̃i = argmax
Xi∈S

P (Xi|Y )
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Maximum a Posteriori Estimator

• Small example...
• Viterbi Algorithm!
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Centroid Estimator

• Continuing our small example....
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Questions?

Questions?
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