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Machine Learning:
Classification/Supervised Learning

Overview

A large number of data analytical procedures are used foptingoses opredic-
tion. The general form of grediction problenis as follows:

Given a set of point¥ = {x1,...,z,} and the values some function
f takes on these point¥: = {y; ...,y }, whereVi € [1,...,n])(y; =
f(x;)), predict the values of () on any inputz.

Uusually, the prediction is to be made in a way th@ahimizessome objective
functionerror:

A~ A~

/= argminf,Error(f, )

The Error() can be computed differently depending on circumstancese Th

space of possible predictiodg’()} may be limited in some ways as well.

There are a number of special cases for the genmealiction problem We
identify some of them below:

1. Regression problemsThe range off (z) is the set of real numbérs

2. Classification problems.Also known assupervised learning problem$he
range off (z) is a finite nominal or ordinal (categorical) set of valuesp\kn
asclasser categories

3. Clustering problems otherwise known aansupervised learning problems
The range off () is anunknown finite nominal or ordinal set of values. The
observed data consists only of the;, ...z, } set of data points, without

*Or simply an infinite, or very large finite set of numbers.



values of f(;) provided. In these problems, it is assumed tfigt;) =
f(z;) if d(z;,x;) is sufficiently small, for some distance functidq). A
clusteris an identified collection of data poin{sy, ..., z;} € X which all
take the same value ¢f().

4. Collaborative filtering problems. In this case, pointg; may have miss-

ing values in some of the dimensions. Lét= {A4,,..., Ay} be the list
of all features/dimensions for points, ..., z,. A collaborative filtering
problem is specified as follows. L&t = A; for somej € {1,...,N}. Let

Z; = {z € X|z[A;] = 0}, that is,Z; is the set of all vectors in séf that
have an unknown value for attributé;. The collaborative filtering prob-
lem is to predict for eachh € Z; the valuey = x[A;] given the sefX of data
points.

Classification Problem. Definitions

Data. Consider a setl = {A4,,...,A,} of attributes, and an additionahte-
gorical attributeC', which we call aclass attribute or category attribute.

dom(C) = {ci, ..., cr}. We call each value; aclass labelor acategory label.
Thelearning datasetis a relational tableD.
Two formats:

1. Training (data)set. D has schem@A,, ..., A,,C),i.e.,
for each element of the dataset we are given its class label.
2. Test (data)set D has schem@A,, ..., A,),i.e.,

the class labels of the records in are not known.

Classification Problem. Given a (training) dataseb, construct aclassifica-
tion/prediction function that correctly predicts the class label for every record
in D.

Classification function= prediction function = classification modelk= classifier.

Supervised learningbecause training set contains class labels. Thus we can com-
pare (supervise) predictions of our classifier.

Classification is usually performed in two steps:

1. Step 1. Model fit. On this step, the incoming training set is analyzed and a
classification function is built to fit the training set.

2. Step 2. Classification (Prediction). This is the operation of actually pro-
ducing a predictiorclass(Z) upon receiving a data point as input. This
step uses the function built during tModel fit step.



Classification Methodology

Logistic Regression.(But you already know that)

Perceptron. A simple linear or non-linear function that bisects the mensional
feature space.

Neural Netowoks. Graphical models that construct a "separation functiorseol
on the training set data by "chaining” multiple perceptrons

Naive Bayes.Estimation of probability that a record belongs to eachslas
Support Vector Machines (SVMs).Linear models for two-class classifiers.
Association Rules.Infer association rules with class label on the right side.
Decision Trees.Build a tree-like classifier.kgey advantage:human-readable!)

Nearest Neighbor classifiers.Lazy evaluation classifiers that predict class of an
input point based on its proximity to points with known caisglabels.

Linear Discriminant Analysis. Classification by finding a low-dimension hyper-
plane (e.g., a line) projection of all points onto which githe best separation.

Simple Ensemble methods.Running multiple independent classifiers and using
majority/plurality prediction.

Bagging. Bagging = Bootstrap aggregation is a resampling technique used to
construct many classifiers (of the same basic type) on baptstd versions of the
training sets. The class of a given data point is predictedasrity/plurality class

for all constructed individual predictordR@ndom Forests is a bagging extension

of Decision Trees classifiers).

Boosting. Boosting is an ensemble technique where after a classiftauilisfor

a given training set, the misclassified data points are giugher weight in the

training set, and a new classifier is built to account for.tiiile method constructs
a sequence of predictors, each of which is trying to correcttfe errors of the

previous one.Adaboost is the classical example of a boosting classifier).

Perceptron

Many classification methods anaturally definedor the case when there are only
two categoriesin the set of category labels. Such situations are usuallgcca
binary classification.

One of the simpledbinary classifierds perceptron.

Definition. Let X = {x1,...,,} be a set of data points, where each paint=
(a1,...,aq)isavector of lengtl. LetC' = {+1, —1} is the set of category labels,
and letY = {y1,...,yn}, yi € C be the category labelg = class(z;).

A perceptron is binary linear classifier that consists of
1. alinear function
d
f@) =Y wj-a
j=1

for some vectow = (wy, ..., wy) of weights



2. athreshold valué, and
3. adecision procedure:

[ 1 i f(z) > 6,
class(z) _{ “1 i f(z) < 6

Intuition. The perceptron functiorf(z) = w - z defines ad — 1 dimensional
hyperplane through thédimensional feature space. Points on plsitiveside of

f are classified into thpositive clasgthe+1 class). Points on the negative side of
f are classified to the negative class (theclass).

Notes.

e For aperceptron to correctly classify the data, the data mustlinearly
separable A dataset is calletinearly separablef there exists a hyperplane
through its feature space that separates the points in degorg from the
points in another category.

e If there are multiple hyperplanes that linearly separagedidita, thepercep-
tron will converge toone of them The error function for the perceptron is
essentially

Error(f(z)) = Z |f(Zs) — vl ,
i=1

i.e. the number of incorrectly classified data points. TfeeeError(f) =
0 for any hyperplanef that linearly separates the dataset, andpteeep-
tron does not differentiate between such hyperplanes.

Training Perceptron

We first present the perceptron training algorithméos 0.

1. Setw = (0,...,0).
2. Pickn > 0, thelearning rateof the perceptron.
3. For each training example, y),z € X do:

@y=w-z
(b) if y andy have the same sign, do nothing.
(c) if ¥/ andy have different signs:

wi=w+n-y-T

To train the perceptron with an arbitrary valuetof

e replace the vectow = (wy, ... w,) with the vectorw’ = (wy, ..., wy, 0).
e replace every vectar € X, wherex = (ay,...,aq) wWith the vectorz’ =
(aty...,aq,—1).



e Train the perceptron using the algorithm above on the weighaind feature
vectorsX' = {z,..., 2} }.

Note: If you squint at it, the training process for tperceptron classifier should
remind you of something. Hint: where else have you seeletimaing rateparam-
eter?

Indeed, this algorithm is a special caseggoddient descent/gradient ascent

When to stop

The training can stop if:

e All z € X have been correctly classified (i.e., when classificatioorer 0).

¢ Failing that, perceptron training can be stopped in onesfdhowing ways:

— After M iterations for some numbédl > n.
— After the following detection error:

1 n
Error' = 3 Z |w - ;- (sign(w - z;) — ;)|
i=1

stops decreasing.

(Note: Error’ computes the sum of distances from the separating hyper-
plane of all points that are misclassified. We need%thmrmalizing factor
becausésign(w - ;) — y;| = 2 when the perceptron misclassifies a data
point.)

Support Vector Machines

Extending Perceptron Classifiers. There are two ways to extergerceptron
classifiers. Each of the two ways corresponds to noticingrfsgiant drawback in
how perceptrons operate, and attempting to "fix” it.

Perceptron weakness#1: binary classification using a single hyperplane. The
core problem with g@erceptron is that it is a simple binary classifier that separates
the classes usingsngle hyperplane. It cannot work well in one of the following
cases:

e Separation boundary is non-lindar
e There is no clear separability of data points.

e More than one hyperplane is required for true separatiorate# doints (the
so called XOR scenario), i.e., the situation, when the foncto learn is
non-monotonic in all its inputs.

2There are some space transformation techniques that bafiiv one to use a single perceptron
for some non-linearly separable cases.



This weakness is addressedMgural Networks, which are constructed as fol-
lows:

¢ Individual perceptrons are modified inteuronsby replacing their activa-
tion function from ad-threshold, to some differentiable function (e.g., a hy-
perbolic tangent function).

e Neurons are organized into networks, but putting the outptlte activation
function of one neuron as input to another neuron. Typichlioks consist
of layersof neurons, with the input layer having one neuron per in@a d
dimension, andhidden laye(s) being given as inputs the outputs of previous
layers.

e The output layer may contain multiple neurons, which alléavextend bi-
nary classification into multi-class classification.

Perceptron weakness#2: choosing the right hyperplane. This is actually two
separate weaknesses:

¢ inability to deal with linearly inseparable datasets, and

¢ inability to properly determine the best separating hy|aerp.

This weakness is addressed ®ypport Vector Machines.

Essentially, goerceptron is converted into &upport Vector Machine (SVM)
by making theerror functionmore complex.

Support Vector Machines with Linear Kernels

Note: The key issue makingerceptrons not distinguish between "good” and
"bad” separating hyperplanes is theakerror function. Support Vector Ma-
chines (SVMs) change the error function. An SVM attempts to select a hyper-
plane

w-Z2+b=0,

such that this hyperplane lies far as possiblérom any point in the training set
(while classifying properly as many points as possible).

Idea: Points that are far away from the decision boundary (or frognseparating
hyperplane) areasy to classifiand give us more certainty about the class they
belong to. Points that are near the decision boundary/stiparhyperplane are
harder to classify. The further away a separating hypeepiarirom the nearest
points, the easier it is to classify those nearest points,tia@ less uncertainty we
have about their class.

Support Vectors. Given a separating hyperplane - £ + b = 0, the points
{z1,...,zr} € X which have theshortest distance to the hyperplaniee., all
the points with the smallest absolute valees e; = w - ; + b3 are calledsupport
vectors of the hyperplane.

That is, the distance fromny pointz, . . ., 7 to the hyperplane is the same.



Attempt 1. Given a training setX,Y) = {(%;,v:)},vi € {-1,+1}, z; =

(ai,...,aq) (for somed - number of features/dimensionslgtermine the vector
of weights w = (wy, ..., w,) and the intercept thatmaximize the valuey, such
thatforalli =1,...,n:

yi - (W-z; +b) > 7.

Intuitively, we want the largest value ef such that for all data points; € X,
wherey; = +1, (w-z; +b) >= ~, and for all data points; € X, wherey;, = —1,
(W-z; +b) <= —7.

Problem: too many degrees of freedomWe can always increase all valuesvof
andb and thus increase: if y; - (w - &; + b) > v theny; - (2-w - z; + 2b) > 2.

Changing the formulation of the problem. Consider the training s€tX,Y") =
{(zi,yi) },vi € {—1,+1}, z; = (a1, ...,aq) and a hyperplane

hz)=w-Z+b=0

Given two pointsy; # 0, such thati(v;) = 0 andh(vz) = 0 (i.e., two points
on the hyperplané(z), we notice:

h(v1) — h(ve) = (W01 +b) — (W- 03 + b) =
w (0 —0) +(b—b)=w- (0 —v2) =0,
from which we observe that vecter is orthogonal to the hyperplarigz).

Now, supposer = (aq,...,aq) iS an arbitraryd-dimensional point. We can
represent this point as the sum

T =Tp+r,
wherez;, is the orthogonal projection af onto the hyperplané(z), andr is the
vectorz — z;. Here,

A% W

H:rdi
w
Zj:lez'

r=r )

wherer is thedirecteddistance fromz;, to z in terms of theunit weight vector

w

Twil
Therefore,
h@:h(thL) —w. (x—WL) .
[w]| [w]
_ W W _ [w?
=w-Zp,+b+r = h(ap) +r- = r|wl.
[w]| [w]|

(remember that since, is on the hyperplang(z), h(2;) = 0.)
Therefore, the directed distance from any pairto the hyperplané(z) is:

L h@
[l



Thedistances from the pointz;in X to the hyperplané (z) is:

Margin. Let h(z) be a hyperplane andX,Y’) = {(z;,y;)} be a training set of
sizen. Themargin §* of h(z) is defined as

5 = min <yih(f‘”)> — min(5;),
[w]| i
where
w-T; +b
5i =Y 5
[w]

i.e., themargin of h(z) is thesmallest relative distancegin terms of the length
of vectorw) from some training set point to the hyperplane.

Canonical planes. To address the issue witkitempt 1, we fix the scale of the
hyperplaneh(z). Since the hyperplane equation can be multiplied by anyascal
s # 0 and preserve the equality:

hMz)=0=s-h(z)=s-w-Z+sb=(s-w)-z+(sb) =0,

we can limit ourselves to only considering the hyperplanbsre's takes a re-
stricted value. Specificallwe want the absolute distance from the support
vectors to the hyperplaneto bel:

sy*(w-z*+0b) =1,

for any support vector* € X such that* %2+t — §* This means that

Twl
1
y*h(z*)

We will limit our search forw andb, i.e., for hyperplane&(z = w -z + b to
those instances where the absolute distances to supptotvace equal ta, that
is:

y*h(z* 1

* )
lwil [lwl]

We call such hyperplanesnonical

Support Vector Machines: Linearly Separable Case
Optimization Problem for Linearly Separable SVMs. Given the training set

(X,Y) = {(zi,9:)},i = 1,...,n, wherez; € R?, andy; € {+1,—1}, find a
canonical hyperplane

hz)=w-Z+b,



that maximizes the |||argi<ﬁ*:
h* = (05,) = 1
rgm = argm .
arg max(0 ) = arg abx Wl

Note: Maximizing §* is the same as minimizingw ||, which, in turn is the same
as minimizing||w||> = w - w. Therefore, we can represent our problem as the

following optimization problem:
. <|IWI|2>
min
w,b 2

yZ(WZLTZ—I—b) > 1.V, e X

Objective Function:

Subject to constraints:

Soft Margin SVMs: Linear and Non-Separable Cases
If either

e Our training set contains points that make it linearly irssaple, or

e We suspect that some data points we will be asked to clasgdy Will fall
inside the margins of the support vector hyperplane,

we can correct our objective function to account for thaseasially, in this case,
we need to change the definition of support vectors. In aiinern-separable
casessupport vectors are

¢ all support vectors from the linearly separable problem. (&all points that
lie on the right side of the classification hyperplane at tistadce 1 from it);

¢ all points from each class that lie on the wrong side of theshgiane.

Because we added another grouggpport vectorswe can no longer use

yi(w- o +b) =1
as the condition that determines which pointssupport vectors

Instead, we introducslack variableg; > 0 to capture the fact that some support
vectors may be closer or further away from the hyperplane:

yilw-a; +b) >1-¢

We consider three cases:

1. & = 0. This turns the distance inequality into
yi(w-z; +b) > 1.

This means that; is either our old support vector, or any point that lies on
the correct side of the hyperplafg@ther away from the hyperplartban the
"old” support vectors.



2.0 <& < 1. Inthis casel — & > 0, and thereforeg; lies on thecorrect
sideof the hyperplane, but is closer to the hyperplanthan the "old-style”
support vectors.

3. &;gel. In this case, the poing; either lies on the hyperplane (in which case
we cannot really classify it) or is on the other side of thedmptane, in which
case it will be misclassified.

Hinge Loss. We define thesoft marginSVM classifier as a canonical hyperplane
h(z) subject to the following conditions:

Objective Function:
min —HWH2 —1—02%&
Wvbv{fi} 2 i=1

Subject to constraints:

yi(w- & +b) >1— & Vo € X

The function
f(d) = max(0,1 — d)

is called thehinge loss function. This function represents the penalty assessed
by an SVM construct for a point that is at the directed distasdidrom a given
hyperplane.

o If the point is at the directed distance of 1 or more, it is om’ttorrect” side
of the hyperplane and therefore, there is no penalty.

o If the point is at the distance betweérandl, it lies in the "neutral zone”
between the hyperplane and the support vector from the skasg as the
point. We give this point a small penalty, because we do rkat o see
points closer to the hyperplane than the support vector.

¢ If the point is on the other side of the hyperplane, we peralizy the
distance from this point to the hyperplane that is paratiebars, but that
passes through the support vectors from the point’s clasdd/this because
for us the penalty is not how far the point is from the hypemplabut how
far it is from "its” support vectors.

Training SVM Classifiers

Step 1. Get rid of the intercept. This can be accomplished by replacing all
vectorsz = (ay,...,aq) € X with the vectorse’ = (a1, ..., aq, 1), and replacing
the vector of weightsv = (wq, ..., w,) with the vectorw’ = (wy,...,wq,b).
(This is a standard procedure that we have seen multiplestaineady).

Without loss of generality, we assume that all vecwwrandz mentioned below
have gone through this transformation.
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Step 2. Pick the problem to optimize. There are two SVM problems that can
be solvedprimal anddual.

The dual problem is solved usingstochastic Gradient Descent, and it is the
more commonly used technique. We discuss it in a separatiban

The primal problem is one of the optimization problems described above (for
linearly separable or soft-margin cases). It can also beedalisingStochastic
Gradient Descent, but it requires some care.

Step 3. Optimizing the primal problem. Minimize objective funati

Tw) = gIwl?+ 03 (€)
=1

subject to linear constraints

yilw-;) >1-¢&;& >0foralli=1,...,n

Let us eliminatet; s from the objective function.
& >1—yi(w-z;),and
§& >0
imply
& = max(0,1 —y;(w - ;) (i.e.,&;s are computed via hinge loss function!)
We can now substitutg s for the hinge loss expression in the objective function:

1 n
J(w) = §||w||2 +CY  max(0,1 — yi(w - 7)
=1

Wheny;(w-z; > 1, the hinge loss is 0, and the penalty is not assessed, therefo
we only need to assess the penalty whgn - z; < 1):

Jw) = IwlP ¢ S (1w w)

(
Yi (W~fi)<1

To solve this problem using stochastic gradient descentpneesl to compute
partial derivatives. This requires some care, becauseitige foss function is not
differentiable atz = 1. We need to write the partial derivative out as follows:

O3wl? _ 933, duw?
Owj Owj

Letz = (aq,...,aq) Forthe hinge loss functioh(z, y) = max(0, 1—y(w-)),
the partial derivative can be built as follows:

*In general, there are two types of objective functions tinige, thehinge lossunction, which
uses the hinge-loss penaltigsand thequadratic losfunction, which uses the squares of hinge-loss
penalties. We concentrate on the hinge loss optimizatioa. he

11



ow; —ya; otherwise

The overall partial derivatives are:

0J
u, =wi+C Y (~yi-ay)

YiwT; <1

For Stochastic Gradient Descent we must pick

e (C: the misclassification penalty multiplier. Large values(dfminimize
the number of misclassifications, but also cause the maigin be small.
Smaller values of” will yield more misclassifications, but will also allow for
the margind* to be larger. Larger margins means most points are relgtivel
far away from the hyperplane, therefore most points areeetsiclassify.

e 7. the learning rate.

e initial values forw, including the intercept (bia%)

Run Gradient Descent:

0J(w)
ow;

e Compute

e adjustw; «— w; — nw

wj

Alternatively, whem is very large, perfornstochastic Gradient Descent.

k-Nearest Neighbors ClassificationNN)

k-Nearest Neighbors Classifiers are among some of the singidssification tech-
nigues. They arehowever surprisingly rather accurate and robust and produce
good results for a wide range of datasets.

kNN classifiers follow the prinicplpe dazy evaluation and do not construct the
data model until a question is asked.

The principle oflazy evaluationis to postpone any data analysis until an actual
guestion has been asked.

In case of supervised learningzy evaluation meansnot building a classifierin
advance of reading data from the test data set.

k-Nearest Neighbors Classification algorithm ENN). 4NN is a simple, but
surprisingly robustazy evaluationalgorithm. The idea behinkNN is as follows:

e The input of the algorithm is a training sBY,;.4ining, @n instance that needs
to be classified and an integer> 1.

e The algorithm computes ttdistancebetweend and every itemi’ € D.

12



e The algorithm selects most similar or closestto d records fromD: d1, . . . , di,
d; € D.

e The algorithm assigns t@ the class of the plurality of items from the list
dy, ..., dg.

Distance/similarity measures. The distance (or similarity) between two records
can be measured in a number of different ways.

Note: Similarity measuresincrease as the similarity between two objects in-
creases.Distance measuresiecrease as the similarity between two objects in-
creases.

1. Eucledian distance If D has continuous attributes, eag¢he D is essen-
tially a point in V-dimensional space (or aM-dimensional vector)Eucle-
dian distance:

n

d(dy, dg) = | > (di[A)] — da[Ad)?,

i=1
works well in this case.

2. Manhattan distance If D has ordinal, but not necessarily continuous at-
tributes,Manhattan distance may work a bit better:

n

d(dy,dg) =) [da[Ai] — da[Ad]].

(2

3. Cosine similarity. Cosine distance between two vectors is the cosince of the
angle between thenCosine similarity ignores the amplitude of the vectors,
and measures only the difference in thdinectiort

dy - do >oiq di[Ai] - doAj]

im(dy, dy) = cos(dy, dy) = - .
sim(dy, d) = cos(dy,da) [l Ndall ~ /S, AR /S, da[ A

If d; anddy arecolinear (have the same directionyim(d;,ds) = 1. If dy
andds areorthogonal sim(dy, ds) = 0.

Classifier Evaluation

Accuracy Measures

Notation. LetT be a classifier constructed apy supervised learning algorithm
given atraining set D.

Let D’ be atest set drawn from the same data/distribution as D.
Lett € D'. AsT(t) we denote thelass labelsupplied fort by the classifiefl.
As class(t) we denote thactual class label of.

13



As Dy, Wwe denote theet of all test cases for which our classifier provides cdrrec
prediction
Dyye = {t € D'|T(t) = class(t)}

As D, Wwe denote theset of all test cases for which our classifier provides
incorrect prediction

Depror = {t € D'|T(t) # class(t)}
Accuracy. Theaccuracy of the classifiefl" is:

Dy,
accuracy(T) = | |g,|e|

Error rate. Theerror rate of the classifiefl” is:

|Derr0r ‘

errorRate(T) = 1 — accuracy(T) = D

Accuracy Measures for Binary Classification

Binary Classifiers. Many classifiers ardinary: i.e., the class variablé' has
only two values. A classifiaction problem witlvm (C) = {c1,... ¢}, k > 2 can
be transformed inté& classification problems with class variablés, Cs, ..., Cy,
such thatdom(C;) = {0,1}. C; = 1 meansC' = ¢;.

Classification Errors. Consider a binary classification problem with the class
variableC, dom(C') = {0,1}, whereC' = 1 is interpreted asrecord belongs to
classC” andC = 0 is interpreted a&%ecord does not belong to class.

Let T be a classifier fo€”. Let D’ be a test dataset. Giveérne D, we can observe
four possibilities:

1. True Positive: T'(t) = class(t) = 1;
2. True Negative: T'(t) = class(t) = 0;
3. False Positive:T'(t) = 1; class(t) = 0;
4. False Negative:T'(t) = 0; class(t) = 1;

There ardwo types of errors of classification

1. Type | error: a.k.a. error of commission a.k.a. false positive classifier
incorrectly classifies a tuple as belonging to class

2. Type Il error: a.k.a. error of omission a.k.a. false negative classifier
incorrectly classifies a tuple as NOT belongingto cléss

Notation. Conisder the following notation:

1. Dyp : set of alltrue positivesin D’; TP = |Drpl;

2. Dpy : set of alltrue negativesin D'; TN = |Dry/;
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3. Dpp : set of allfalse positivesin D’; FP = |Dpp

4. Dpy : set of allfalse negativesn D’; FN = |Dpy/|;

Confusion Matrix. ~ The information about the accuracy obmary classifier is
usually arranged in a form @onfusion matrix:
| Classified Positive | Classified Negative |

Actual positive TP FN
Actual negative FP TN

Precision. Precisionof the classifier is the percentage of the correptgitively
classified records in the set of all positively classifiedrds:

TP
- TP+ FP’

Precision measurdsow accurately the classifier selects positive examptes
reaches 100% when the classiféeimits no false positives

precision(T)

Recall. Recallof the classifier is the percentage of all correqibsitivelyclassi-
fied records in the set of all actual positive records:

TP
TP+ FN’

Recall measurelsow successful the classifier is in correctly identifyinigpalsi-
tive records.It reaches 100% when the classifegmits no false negatives.

recall(T)

Note: Precisionandrecall make sensenly when combined together.

Itis easy to build a classifier with 100% precisidr{t) = 0 for all t € D’ guarantees
that. But this classifier will have recall of O It is easy to build a classifier with
100% recall:T(t) = 1 for all t € D’ guarantees thaBut this classifier will have
small precision.

PF. ThePF measure is defined as:

_FP
 FP+ TN’

PF measures thmisclassification ratethe percentage of recordst in classC
that wasincorrectly classified

PF(T)

F-measure. TheF-measureis the harmonic mean of precision and recall:

2 2 - precision(T) - recall(T)
F(T) = 1 T

precision(T") + recall(T)

~ precicion(T) + recall(T)

F-measure combines precision and recall into a single number by baignc
them against each other.
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In some situations, one of the two measures (precision ailyés more impor-
tant than the otherF-measurecan be skewed to favor each. Thg-measure
below assumes recall is twice as valuable as precision. Fjemeasurebelow
assumes precision is twice as valuable as recall.

Fy(T) = 5 - precision(T) - recall(T)
T precision(T) + recall(T)’
125 - precision(T') - recall(T)
~0.25 * precision(T) + recall(T)

Fos(T)

The formula forFj, where represents the relative importance of recall over
precision is:

(1+ B%) - precision(T) - recall(T)
B3?  precision(T) + recall(T)

Fy(T) =

Evaluation Techniques

In a typical situation, you are giventeaining set D, and are asked to produce a
classifier for it.

If all records from D are used to create a classifier, there will be no way to
INDEPENDENTLY test its accuracy.

Holdout set. Divide D into two sets:D = Dy, qin U Diest: Dirain 0 Diest = 0.
D, is called theholdout set.

Create a classifi€r’ using Dy,-.:,, as the training seflestT” using D;¢;.
Holodout setselection:

e Random sampling. Select a fraction:. Randomly sample% of records
from D, put them iNDy.;.

Commonly, you use around 90% o&f as the training set, reserving the re-
maining10% for the holdout set.

e Time slices. If D consists of "old” data and "new” data, then, the training
set can include all of the "old” data, while the holdout seh @aclude the
"new” data. (e.g., in situations where new records appearysiay).

Multiple random sampling. This technique is used whdn is small.

e Select some numbé¥l of repetitions.

e PerformM random samplings of holdout setfrom D. Run classifier con-
struction on the remaining sél,..;,. Compute theccuracy of the classi-
fier for the current sample.

e Compute the finahccuracy as the meaaccuracy over all samples.

Multiple random sampling allows us to avoidlukes(or, at least, to downgrade
their effects).
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Cross-Validation. This is a variant omultiple random sampling that uses only
one random assignment of records, but performs multipksileations.

e Selectn — the number o$licesof data inD.

e Usingrandom samplingplit D into n slicesof equal (or almost equal) size.

e Peformn classification procedures. On stepuse sliceD; as theholdout
set while using all othern — 1 slices as théraining set.

Note: Standard cross-validations used in practiceldéxdold, 5-fold andleave-
one-outcross-validations.
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