
. .
Dennis Sun DATA 401 Data Science Alexander Dekhtyar
. .

Machine Learning:
Classification/Supervised Learning

Overview

A large number of data analytical procedures are used for thepurposes ofpredic-
tion. The general form of aprediction problemis as follows:

Given a set of pointsX = {x̄1, . . . , x̄n} and the values some function
f takes on these points:Y = {y1 . . . , yn}, where(∀i ∈ [1, . . . , n])(yi =
f(x̄i)), predict the values off() on any input̄x.

Uusually, the prediction is to be made in a way thatminimizessome objective
functionerror:

f̂ = argmin
f̂ ′

Error(f, f̂ ′)

The Error() can be computed differently depending on circumstances. The
space of possible predictions{ ˆf ′()}may be limited in some ways as well.

There are a number of special cases for the generalprediction problem. We
identify some of them below:

1. Regression problems.The range off(x̄) is the set of real numbers1.

2. Classification problems.Also known assupervised learning problems.The
range off(x̄) is a finite nominal or ordinal (categorical) set of values, known
asclassesor categories.

3. Clustering problems otherwise known asunsupervised learning problems.
The range off(x̄) is anunknown finite nominal or ordinal set of values. The
observed data consists only of the{x̄1, . . . x̄n} set of data points, without

1Or simply an infinite, or very large finite set of numbers.

1

values off(x̄i) provided. In these problems, it is assumed thatf(x̄i) =
f(x̄j) if d(x̄i, x̄j) is sufficiently small, for some distance functiond(). A
cluster is an identified collection of data points{z̄1, . . . , z̄k} ⊆ X which all
take the same value off().

4. Collaborative filtering problems. In this case, points̄xi may have miss-
ing values in some of the dimensions. LetA = {A1, . . . , AN} be the list
of all features/dimensions for points̄x1, . . . , x̄n. A collaborative filtering
problem is specified as follows. LetY = Aj for somej ∈ {1, . . . , N}. Let
Zj = {x̄ ∈ X|x[Aj] = ∅}, that is,Zj is the set of all vectors in setX that
have an unknown value for attributeAj . Thecollaborative filtering prob-
lem is to predict for each̄x ∈ Zj the valuey = x[Aj] given the setX of data
points.

Classification Problem. Definitions

Data. Consider a setA = {A1, . . . , An} of attributes, and an additionalcate-
gorical attributeC, which we call aclass attribute or category attribute.

dom(C) = {c1, . . . , ck}. We call each valueci aclass labelor acategory label.

The learning datasetis a relational tableD.

Two formats:

1. Training (data)set. D has schema(A1, . . . , An, C), i.e.,

for each element of the dataset we are given its class label.

2. Test (data)set. D has schema(A1, . . . , An), i.e.,

the class labels of the records inD are not known.

Classification Problem. Given a (training) datasetD, construct aclassifica-
tion/prediction function that correctly predicts the class label for every record
in D.

Classification function= prediction function = classification model= classifier.

Supervised learningbecause training set contains class labels. Thus we can com-
pare (supervise) predictions of our classifier.

Classification is usually performed in two steps:

1. Step 1. Model fit. On this step, the incoming training set is analyzed and a
classification function is built to fit the training set.

2. Step 2. Classification (Prediction).This is the operation of actually pro-
ducing a predictionclass(x̄) upon receiving a data point̄x as input. This
step uses the function built during theModel fit step.

2

Classification Methodology

Logistic Regression.(But you already know that)

Perceptron. A simple linear or non-linear function that bisects the n-dimensional
feature space.

Neural Netowoks.Graphical models that construct a ”separation function” based
on the training set data by ”chaining” multiple perceptrons.

Näıve Bayes.Estimation of probability that a record belongs to each class.

Support Vector Machines (SVMs).Linear models for two-class classifiers.

Association Rules.Infer association rules with class label on the right side.

Decision Trees.Build a tree-like classifier. (key advantage:human-readable!)

Nearest Neighbor classifiers.Lazy evaluation classifiers that predict class of an
input point based on its proximity to points with known category labels.

Linear Discriminant Analysis. Classification by finding a low-dimension hyper-
plane (e.g., a line) projection of all points onto which gives the best separation.

Simple Ensemble methods.Running multiple independent classifiers and using
majority/plurality prediction.

Bagging. Bagging= Bootstrap aggregation is a resampling technique used to
construct many classifiers (of the same basic type) on bootstrapped versions of the
training sets. The class of a given data point is predicted asmajority/plurality class
for all constructed individual predictors. (Random Forests is a bagging extension
of Decision Trees classifiers).

Boosting. Boosting is an ensemble technique where after a classifier isbuilt for
a given training set, the misclassified data points are givenhigher weight in the
training set, and a new classifier is built to account for that. The method constructs
a sequence of predictors, each of which is trying to correct for the errors of the
previous one. (Adaboost is the classical example of a boosting classifier).

Perceptron

Many classification methods arenaturally definedfor the case when there are only
two categoriesin the set of category labels. Such situations are usually called
binary classification.

One of the simplestbinary classifiersis perceptron.

Definition. Let X = {x̄1, . . . , x̄n} be a set of data points, where each pointx̄i =
(a1, . . . , ad) is a vector of lengthd. LetC = {+1,−1} is the set of category labels,
and letY = {y1, . . . , yn}, yi ∈ C be the category labelsyi = class(x̄i).

A perceptron is binary linear classifier that consists of

1. a linear function

f(x̄) =

d
∑

j=1

wj · aj

for some vectorw = (w1, . . . , wd) of weights,

3

2. a threshold valueθ, and

3. a decision procedure:

class(x̄) =

{

+1 if f(x̄) > θ;
−1 if f(x̄) < θ;

Intuition. The perceptron functionf(x̄) = w · x̄ defines ad − 1 dimensional
hyperplane through thed-dimensional feature space. Points on thepositiveside of
f are classified into thepositive class(the+1 class). Points on the negative side of
f are classified to the negative class (the−1 class).

Notes.

• For a perceptron to correctly classify the data, the data must belinearly
separable. A dataset is calledlinearly separableif there exists a hyperplane
through its feature space that separates the points in one category from the
points in another category.

• If there are multiple hyperplanes that linearly separate the data, thepercep-
tron will converge toone of them. The error function for the perceptron is
essentially

Error(f(x̄)) =

n
∑

i=1

|f(x̄i)− yi| ,

i.e. the number of incorrectly classified data points. Therefore Error(f) =
0 for any hyperplanef that linearly separates the dataset, and thepercep-
tron does not differentiate between such hyperplanes.

Training Perceptron

We first present the perceptron training algorithm forθ = 0.

1. Setw = (0, . . . , 0).

2. Pickη > 0, thelearning rateof the perceptron.

3. For each training example(x̄, y), x̄ ∈ X do:

(a) y′ = w · x̄

(b) if y′ andy have the same sign, do nothing.

(c) if y′ andy have different signs:

w := w + η · y · x̄

To train the perceptron with an arbitrary value ofθ:

• replace the vectorw = (w1, . . . wd) with the vectorw′ = (w1, . . . , wd, θ).

• replace every vector̄x ∈ X, wherex = (a1, . . . , ad) with the vectorx̄′ =
(a1, . . . , ad,−1).

4

• Train the perceptron using the algorithm above on the weightsw
′ and feature

vectorsX ′ = {x̄′
1, . . . , x̄

′
n}.

Note: If you squint at it, the training process for theperceptron classifier should
remind you of something. Hint: where else have you seen thelearning rateparam-
eter?

Indeed, this algorithm is a special case ofgradient descent/gradient ascent.

When to stop

The training can stop if:

• All x̄ ∈ X have been correctly classified (i.e., when classification error = 0).

• Failing that, perceptron training can be stopped in one of the following ways:

– After M iterations for some numberM > n.

– After the following detection error:

Error′ =
1

2

n
∑

i=1

|w · x̄i · (sign(w · x̄i)− yi)|

stops decreasing.

(Note: Error′ computes the sum of distances from the separating hyper-
plane of all points that are misclassified. We need the1

2 normalizing factor
because|sign(w · x̄i) − yi| = 2 when the perceptron misclassifies a data
point.)

Support Vector Machines

Extending Perceptron Classifiers. There are two ways to extendperceptron
classifiers. Each of the two ways corresponds to noticing a significant drawback in
how perceptrons operate, and attempting to ”fix” it.

Perceptron weakness#1: binary classification using a single hyperplane. The
core problem with aperceptron is that it is a simple binary classifier that separates
the classes using asinglehyperplane. It cannot work well in one of the following
cases:

• Separation boundary is non-linear2.

• There is no clear separability of data points.

• More than one hyperplane is required for true separation of data points (the
so called XOR scenario), i.e., the situation, when the function to learn is
non-monotonic in all its inputs.

2There are some space transformation techniques that can still allow one to use a single perceptron
for some non-linearly separable cases.

5

This weakness is addressed byNeural Networks, which are constructed as fol-
lows:

• Individual perceptrons are modified intoneuronsby replacing their activa-
tion function from aθ-threshold, to some differentiable function (e.g., a hy-
perbolic tangent function).

• Neurons are organized into networks, but putting the outputof the activation
function of one neuron as input to another neuron. Typical networks consist
of layersof neurons, with the input layer having one neuron per input data
dimension, andhidden layer(s) being given as inputs the outputs of previous
layers.

• The output layer may contain multiple neurons, which allowsto extend bi-
nary classification into multi-class classification.

Perceptron weakness#2: choosing the right hyperplane. This is actually two
separate weaknesses:

• inability to deal with linearly inseparable datasets, and

• inability to properly determine the best separating hyperplane.

This weakness is addressed bySupport Vector Machines.

Essentially, aperceptron is converted into aSupport Vector Machine (SVM)
by making theerror functionmore complex.

Support Vector Machines with Linear Kernels

Note: The key issue makingperceptrons not distinguish between ”good” and
”bad” separating hyperplanes is theweakerror function. Support Vector Ma-
chines (SVMs) change the error function. An SVM attempts to select a hyper-
plane

w · x̄ + b = 0,

such that this hyperplane liesas far as possiblefrom any point in the training set
(while classifying properly as many points as possible).

Idea: Points that are far away from the decision boundary (or from any separating
hyperplane) areeasy to classifyand give us more certainty about the class they
belong to. Points that are near the decision boundary/separating hyperplane are
harder to classify. The further away a separating hyperplane is from the nearest
points, the easier it is to classify those nearest points, and the less uncertainty we
have about their class.

Support Vectors. Given a separating hyperplanew · x̄ + b = 0, the points
{z̄1, . . . , z̄k} ⊆ X which have theshortest distance to the hyperplane, i.e., all
the points with the smallest absolute valuese = ei = w · z̄i +b3 are calledsupport
vectorsof the hyperplane.

3That is, the distance fromany point z̄1, . . . , z̄k to the hyperplane is the same.

6

Attempt 1. Given a training set(X,Y) = {(x̄i, yi)}, yi ∈ {−1,+1}, x̄i =
(a1, . . . , ad) (for somed - number of features/dimensions),determine the vector
of weights w = (w1, . . . , wd) and the interceptb thatmaximize the valueγ, such
that for alli = 1, . . . , n:

yi · (w · x̄i + b) ≥ γ.

Intuitively, we want the largest value ofγ, such that for all data points̄xi ∈ X,
whereyi = +1, (w · x̄i +b) >= γ, and for all data points̄xi ∈ X, whereyi = −1,
(w · x̄i + b) <= −γ.

Problem: too many degrees of freedom.We can always increase all values ofw

andb and thus increaseγ: if yi · (w · x̄i + b) ≥ γ thenyi · (2 ·w · x̄i + 2b) ≥ 2γ.

Changing the formulation of the problem. Consider the training set(X,Y) =
{(x̄i, yi)}, yi ∈ {−1,+1}, x̄i = (a1, . . . , ad) and a hyperplane

h(x̄) = w · x̄ + b = 0

Given two pointsv̄1 6= v̄2, such thath(v̄1) = 0 andh(v̄2) = 0 (i.e., two points
on the hyperplaneh(x̄), we notice:

h(v1)− h(v2) = (w · v̄1 + b)− (w · v̄2 + b) =

w · (v̄1 − v̄2) + (b− b) = w · (v̄1 − v̄2) = 0,

from which we observe that vectorw is orthogonal to the hyperplaneh(x̄).

Now, supposēx = (a1, . . . , ad) is an arbitraryd-dimensional point. We can
represent this point as the sum

x̄ = x̄h + r,

wherex̄h is the orthogonal projection of̄x onto the hyperplaneh(x̄), andr is the
vectorx̄− x̄h. Here,

r = r ·
w

‖w‖
= r ·

w
√

∑d
j=1 w2

j

,

wherer is thedirecteddistance fromx̄h to x̄ in terms of theunit weight vector
w

‖w‖ .

Therefore,

h(x̄) = h

(

x̄h + r
w

‖w‖

)

= w ·

(

x̄h + r
w

‖w‖

)

+ b =

= w · x̄h + b + r
w ·w

‖w‖
= h(x̄h) + r ·

‖w‖2

‖w‖
= r‖w‖.

(remember that sincēxh is on the hyperplaneh(x̄), h(x̄h) = 0.)

Therefore, the directed distance from any pointx̄ to the hyperplaneh(x̄) is:

r =
h(x̄)

‖w‖
.

7

Thedistanceδ from the pointx̄iinX to the hyperplaneh(x̄) is:

δi = yi · ri = y ·
h(x̄i)

‖w‖
.

Margin. Let h(x̄) be a hyperplane and(X,Y) = {(x̄i, yi)} be a training set of
sizen. Themargin δ∗ of h(x̄) is defined as

δ∗ = min
i

(

yi
h(x̄i)

‖w‖

)

= min
i

(δi),

where

δi = yi
w · x̄i + b

‖w‖
,

i.e., themargin of h(x̄) is thesmallest relative distance(in terms of the length
of vectorw) from some training set point to the hyperplane.

Canonical planes. To address the issue withAttempt 1, we fix the scale of the
hyperplaneh(x̄). Since the hyperplane equation can be multiplied by any scalar
s 6= 0 and preserve the equality:

h(x̄) = 0⇒ s · h(x̄) = s ·w · x̄ + sb = (s ·w) · x + (sb) = 0,

we can limit ourselves to only considering the hyperplanes wheres takes a re-
stricted value. Specifically,we want the absolute distance from the support
vectors to the hyperplaneto be1:

sy∗(w · x̄∗ + b) = 1,

for any support vector̄x∗ ∈ X such thaty∗w·x̄+b
‖w‖ = δ∗. This means that

s =
1

y∗h(x∗)
.

We will limit our search forw andb, i.e., for hyperplanesh(x̄ = w · x̄ + b to
those instances where the absolute distances to support vectors are equal to1, that
is:

δ∗ =
y∗h(x̄∗

‖w‖
=

1

‖w‖
.

We call such hyperplanescanonical.

Support Vector Machines: Linearly Separable Case

Optimization Problem for Linearly Separable SVMs. Given the training set
(X,Y) = {(x̄i, yi)}, i = 1, . . . , n, wherex̄i ∈ R

d, andyi ∈ {+1,−1}, find a
canonical hyperplane

h(x̄) = w · x̄ + b,

8

that maximizes the marginδ∗:

h∗ = arg max
h

(δ∗h) = arg max
w,b

(

1

‖w‖

)

.

Note: Maximizing δ∗ is the same as minimizing‖w‖, which, in turn is the same
as minimizing‖w‖2 = w · w. Therefore, we can represent our problem as the
following optimization problem:

Objective Function:

min
w,b

(

‖w‖2

2

)

Subject to constraints:

yi(w · x̄i + b) ≥ 1,∀x̄i ∈ X

Soft Margin SVMs: Linear and Non-Separable Cases

If either

• Our training set contains points that make it linearly inseparable, or

• We suspect that some data points we will be asked to classify later will fall
inside the margins of the support vector hyperplane,

we can correct our objective function to account for that. Essentially, in this case,
we need to change the definition of support vectors. In a linearly non-separable
cases,support vectors are:

• all support vectors from the linearly separable problem (i.e., all points that
lie on the right side of the classification hyperplane at the distance 1 from it);

• all points from each class that lie on the wrong side of the hyperplane.

Because we added another group ofsupport vectors, we can no longer use

yi(w · x̄i + b) = 1

as the condition that determines which points aresupport vectors.

Instead, we introduceslack variablesξi ≥ 0 to capture the fact that some support
vectors may be closer or further away from the hyperplane:

yi(w · x̄i + b) ≥ 1− ξi

We consider three cases:

1. ξi = 0. This turns the distance inequality into

yi(w · x̄i + b) ≥ 1.

This means that̄xi is either our old support vector, or any point that lies on
the correct side of the hyperplanefurther away from the hyperplanethan the
”old” support vectors.

9

2. 0 < ξi < 1. In this case1 − ξi > 0, and therefore,̄xi lies on thecorrect
sideof the hyperplane, butit is closer to the hyperplanethan the ”old-style”
support vectors.

3. ξige1. In this case, the point̄xi either lies on the hyperplane (in which case
we cannot really classify it) or is on the other side of the hyperplane, in which
case it will be misclassified.

Hinge Loss. We define thesoft marginSVM classifier as a canonical hyperplane
h(x̄) subject to the following conditions:

Objective Function:

min
w,b,{ξi}

(

‖w‖2

2
+ C

n
∑

i=1

ξi

)

Subject to constraints:

yi(w · x̄i + b) ≥ 1− ξi,∀x̄i ∈ X

The function
f(d) = max(0, 1 − d)

is called thehinge loss function. This function represents the penalty assessed
by an SVM construct for a point that is at the directed distance d from a given
hyperplane.

• If the point is at the directed distance of 1 or more, it is on the ”correct” side
of the hyperplane and therefore, there is no penalty.

• If the point is at the distance between0 and1, it lies in the ”neutral zone”
between the hyperplane and the support vector from the same class as the
point. We give this point a small penalty, because we do not like to see
points closer to the hyperplane than the support vector.

• If the point is on the other side of the hyperplane, we penalize it by the
distance from this point to the hyperplane that is parallel to ours, but that
passes through the support vectors from the point’s class. We do this because
for us the penalty is not how far the point is from the hyperplane, but how
far it is from ”its” support vectors.

Training SVM Classifiers

Step 1. Get rid of the intercept. This can be accomplished by replacing all
vectorsx̄ = (a1, . . . , ad) ∈ X with the vectors̄x′ = (a1, . . . , ad, 1), and replacing
the vector of weightsw = (w1, . . . , wd) with the vectorw′ = (w1, . . . , wd, b).
(This is a standard procedure that we have seen multiple times already).

Without loss of generality, we assume that all vectorsw andx̄ mentioned below
have gone through this transformation.

10

Step 2. Pick the problem to optimize. There are two SVM problems that can
be solved:primal anddual.

The dual problem is solved usingStochastic Gradient Descent, and it is the
more commonly used technique. We discuss it in a separate handout.

The primal problem is one of the optimization problems described above (for
linearly separable or soft-margin cases). It can also be solved usingStochastic
Gradient Descent, but it requires some care.

Step 3. Optimizing the primal problem. Minimize objective function:4

J(w) =
1

2
‖w‖2 + C

n
∑

i=1

(ξi)

subject to linear constraints

yi(w · x̄i) ≥ 1− ξi; ξi ≥ 0 for all i = 1, . . . , n

Let us eliminateξis from the objective function.

ξi ≥ 1− yi(w · x̄i), and
ξi ≥ 0

imply

ξi = max(0, 1 − yi(w · x̄i) (i.e.,ξis are computed via hinge loss function!)

We can now substituteξis for the hinge loss expression in the objective function:

J(w) =
1

2
‖w‖2 + C

n
∑

i=1

max(0, 1 − yi(w · x̄i)

Whenyi(w·x̄i ≥ 1, the hinge loss is 0, and the penalty is not assessed, therefore,
we only need to assess the penalty whenyi(w · x̄i < 1):

J(w) =
1

2
‖w‖2 + C

∑

yi(w·x̄i)<1

(1− yi(w · x̄i))

To solve this problem using stochastic gradient descent, weneed to compute
partial derivatives. This requires some care, because the hinge loss function is not
differentiable atx = 1. We need to write the partial derivative out as follows:

∂ 1
2‖w‖

2

∂wj
=

∂ 1
2

∑

i=1 dw2
i

∂wj
= wj

Let x̄ = (a1, . . . , ad) For the hinge loss functionL(x̄, y) = max(0, 1−y(w·x̄)),
the partial derivative can be built as follows:

4In general, there are two types of objective functions to optimize, thehinge lossfunction, which
uses the hinge-loss penaltiesξi, and thequadratic lossfunction, which uses the squares of hinge-loss
penalties. We concentrate on the hinge loss optimization here.

11

∂L

∂wj
=

{

0 if yiw · x̄ ≥ 1
−yaj otherwise

The overall partial derivatives are:

∂J

∂wj
= wj + C

∑

yiwx̄i<1

(−yi · aij)

For Stochastic Gradient Descent we must pick

• C: the misclassification penalty multiplier. Large values ofC minimize
the number of misclassifications, but also cause the marginδ∗ to be small.
Smaller values ofC will yield more misclassifications, but will also allow for
the marginδ∗ to be larger. Larger margins means most points are relatively
far away from the hyperplane, therefore most points are easier to classify.

• η: the learning rate.

• initial values forw, including the intercept (bias)b.

RunGradient Descent:

• Compute∂J(w)
∂wj

• adjustwj ←− wj − η
∂J(w)
∂wj

Alternatively, whenn is very large, performStochastic Gradient Descent.

k-Nearest Neighbors Classification (kNN)

k-Nearest Neighbors Classifiers are among some of the simplest classification tech-
niques. They are,however surprisingly rather accurate and robust and produce
good results for a wide range of datasets.

kNN classifiers follow the prinicplpe oflazy evaluation and do not construct the
data model until a question is asked.

The principle oflazy evaluation is to postpone any data analysis until an actual
question has been asked.

In case of supervised learning,lazy evaluationmeansnot building a classifier in
advance of reading data from the test data set.

k-Nearest Neighbors Classification algorithm (kNN). kNN is a simple, but
surprisingly robustlazy evaluationalgorithm. The idea behindkNN is as follows:

• The input of the algorithm is a training setDtraining, an instanced that needs
to be classified and an integerk > 1.

• The algorithm computes thedistancebetweend and every itemd′ ∈ D.

12

• The algorithm selectsk most similar orclosesttod records fromD: d1, . . . , dk,
di ∈ D.

• The algorithm assigns tod the class of the plurality of items from the list
d1, . . . , dk.

Distance/similarity measures. The distance (or similarity) between two records
can be measured in a number of different ways.

Note: Similarity measures increase as the similarity between two objects in-
creases.Distance measuresdecrease as the similarity between two objects in-
creases.

1. Eucledian distance. If D has continuous attributes, eachd ∈ D is essen-
tially a point inN -dimensional space (or anN -dimensional vector).Eucle-
dian distance:

d(d1, d2) =

√

√

√

√

n
∑

i=1

(d1[Ai]− d2[Ai])2,

works well in this case.

2. Manhattan distance. If D has ordinal, but not necessarily continuous at-
tributes,Manhattan distance may work a bit better:

d(d1, d2) =

n
∑

i

|d1[Ai]− d2[Ai]|.

3. Cosine similarity. Cosine distance between two vectors is the cosince of the
angle between them.Cosine similarity ignores the amplitude of the vectors,
and measures only the difference in theirdirection:

sim(d1, d2) = cos(d1, d2) =
d1 · d2

||d1|| · ||d2||
=

∑n
i=1 d1[Ai] · d2[Ai]

√
∑n

i=1 d1[Ai]2 ·
√
∑n

i=1 d2[Ai]2
.

If d1 andd2 arecolinear (have the same direction),sim(d1, d2) = 1. If d1

andd2 areorthogonal, sim(d1, d2) = 0.

Classifier Evaluation

Accuracy Measures

Notation. Let T be a classifier constructed byany supervised learning algorithm
given atraining set D.

Let D′ be atest set, drawn from the same data/distribution as D.

Let t ∈ D′. As T (t) we denote theclass labelsupplied fort by the classifierT .

As class(t) we denote theactual class label oft.

13

AsDtrue we denote theset of all test cases for which our classifier provides correct
prediction:

Dtrue = {t ∈ D′|T (t) = class(t)}

As Derror we denote theset of all test cases for which our classifier provides
incorrect prediction:

Derror = {t ∈ D′|T (t) 6= class(t)}

Accuracy. Theaccuracyof the classifierT is:

accuracy(T) =
|Dtrue|

|D′|
.

Error rate. Theerror rate of the classifierT is:

errorRate(T) = 1− accuracy(T) =
|Derror|

|D|
.

Accuracy Measures for Binary Classification

Binary Classifiers. Many classifiers arebinary : i.e., the class variableC has
only two values. A classifiaction problem withdom(C) = {c1, . . . ck}, k > 2 can
be transformed intok classification problems with class variablesC1, C2, . . . , Ck,
such that,dom(Ci) = {0, 1}. Ci = 1 meansC = ci.

Classification Errors. Consider a binary classification problem with the class
variableC, dom(C) = {0, 1}, whereC = 1 is interpreted as”record belongs to
classC” andC = 0 is interpreted as”record does not belong to classC.

Let T be a classifier forC. Let D′ be a test dataset. Givent ∈ D, we can observe
four possibilities:

1. True Positive: T (t) = class(t) = 1;
2. True Negative: T (t) = class(t) = 0;
3. False Positive:T (t) = 1; class(t) = 0;
4. False Negative:T (t) = 0; class(t) = 1;

There aretwo types of errors of classification:

1. Type I error: a.k.a. error of commission a.k.a. false positive: classifier
incorrectly classifies a tuple as belonging to classC.

2. Type II error: a.k.a. error of omission a.k.a. false negative: classifier
incorrectly classifies a tuple as NOT belongingto classC.

Notation. Conisder the following notation:

1. DTP : set of alltrue positives in D′; TP = |DTP |;

2. DTN : set of alltrue negativesin D′; TN = |DTN |;

14

3. DFP : set of allfalse positivesin D′; FP = |DFP |;

4. DFN : set of allfalse negativesin D′; FN = |DFN |;

Confusion Matrix. The information about the accuracy of abinary classifier is
usually arranged in a form ofconfusion matrix:

Classified Positive Classified Negative

Actual positive TP FN

Actual negative FP TN

Precision. Precisionof the classifier is the percentage of the correctlypositively
classified records in the set of all positively classified records:

precision(T) =
TP

TP + FP
.

Precision measureshow accurately the classifier selects positive examples, it
reaches 100% when the classifieradmits no false positives.

Recall. Recallof the classifier is the percentage of all correctlypositivelyclassi-
fied records in the set of all actual positive records:

recall(T) =
TP

TP + FN
.

Recall measureshow successful the classifier is in correctly identifying all posi-
tive records.It reaches 100% when the classifieradmits no false negatives.

Note: Precisionandrecall make senseonly when combined together.

It is easy to build a classifier with 100% precision:T(t) = 0 for all t ∈ D′ guarantees
that. But this classifier will have recall of 0. It is easy to build a classifier with
100% recall:T(t) = 1 for all t ∈ D′ guarantees that.But this classifier will have
small precision.

PF. ThePF measure is defined as:

PF (T) =
FP

FP + TN
.

PF measures themisclassification rate: the percentage of recordsnot in classC
that wasincorrectly classified.

F-measure. TheF-measureis the harmonic mean of precision and recall:

F (T) =
2

1
precision(T) + 1

recall(T)

=
2 · precision(T) · recall(T)

precicion(T) + recall(T)
.

F-measurecombines precision and recall into a single number by balancing
them against each other.

15

In some situations, one of the two measures (precision or recall) is more impor-
tant than the other.F-measurecan be skewed to favor each. TheF2-measure
below assumes recall is twice as valuable as precision. TheF0.5-measurebelow
assumes precision is twice as valuable as recall.

F2(T) =
5 · precision(T) · recall(T)

4 ∗ precision(T) + recall(T)
.

F0.5(T) =
1.25 · precision(T) · recall(T)

0.25 ∗ precision(T) + recall(T)
.

The formula forFβ , whereβ represents the relative importance of recall over
precision is:

Fβ(T) =
(1 + β2) · precision(T) · recall(T)

β2 ∗ precision(T) + recall(T)
.

Evaluation Techniques

In a typical situation, you are given atraining set D, and are asked to produce a
classifier for it.

If all records from D are used to create a classifier, there will be no way to
INDEPENDENTLY test its accuracy.

Holdout set. Divide D into two sets:D = Dtrain ∪Dtest; Dtrain ∩Dtest = ∅.

Dtest is called theholdout set.

Create a classifierT usingDtrain as the training set.TestT usingDtest.

Holodout setselection:

• Random sampling. Select a fractionx. Randomly samplex% of records
from D, put them inDtest.

Commonly, you use around 90% ofD as the training set, reserving the re-
maining10% for the holdout set.

• Time slices. If D consists of ”old” data and ”new” data, then, the training
set can include all of the ”old” data, while the holdout set can include the
”new” data. (e.g., in situations where new records appear every day).

Multiple random sampling. This technique is used whenD is small.

• Select some numberM of repetitions.

• PerformM random samplings of aholdout set from D. Run classifier con-
struction on the remaining setDtrain. Compute theaccuracy of the classi-
fier for the current sample.

• Compute the finalaccuracy as the meanaccuracy over all samples.

Multiple random sampling allows us to avoidflukes(or, at least, to downgrade
their effects).

16

Cross-Validation. This is a variant ofmultiple random sampling that uses only
one random assignment of records, but performs multiple classifications.

• Selectn – the number ofslicesof data inD.

• Usingrandom samplingsplit D into n slicesof equal (or almost equal) size.

• Peformn classification procedures. On stepi, use sliceDi as theholdout
set, while using all othern− 1 slices as thetraining set.

Note: Standard cross-validations used in practice are10-fold, 5-fold andleave-
one-outcross-validations.

References

[1] Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman,Mining of Massive
Datasets, 2nd Edition, Cambridge University Press, 2014.

[2] Mohammed J. Zaki, Wagner Meira Jr.,Data Mining and Analysis: Funda-
mental Concepts and Algorithms, Cambridge University Press, 2014.

17

