Data 451 Principal Components Analysis

Hunter Glanz

February 19, 2019

: Data 451 Principal Components Analysis

• In 1904, Charles Spearman noted that children's performance across unrelated school subjects, like Classics, Math, and Music, were positively correlated.

- In 1904, Charles Spearman noted that children's performance across unrelated school subjects, like Classics, Math, and Music, were positively correlated.
- He hypothesized that all cognitive ability could be traced to a single "general intelligence" factor, which he called the *g* factor.

- In 1904, Charles Spearman noted that children's performance across unrelated school subjects, like Classics, Math, and Music, were positively correlated.
- He hypothesized that all cognitive ability could be traced to a single "general intelligence" factor, which he called the *g* factor.
- Later, IQ tests were designed to try to measure this *g* factor. It attempts to quantify intelligence along a single dimension.

It is typical to first **center** the variables so that they have mean 0.

The g factor is a combination of math and verbal skills. It is the direction in the data of greatest variability. This is called the **first principal component**.

: Data 451 Principal Components Analysis

The direction of greatest variability is *different* from the linear regression line.

We can **project** the points onto this direction to obtain scores.

We've now reduced our two-dimensional data to just a single dimension.

- Suppose we have variables X_1, \ldots, X_p
- Principal components analysis (PCA) is a zero correlation, rotational transform of these variables

- Suppose we have variables X_1, \ldots, X_p
- Principal components analysis (PCA) is a zero correlation, rotational transform of these variables
 - ...with some bonus features and properties

- Suppose we have variables X_1, \ldots, X_p
- Principal components analysis (PCA) is a zero correlation, rotational transform of these variables
 - ...with some bonus features and properties
- PCA finds a low-dimensional representation of a data set that contains as much of the variation as possible:

- Suppose we have variables X_1, \ldots, X_p
- Principal components analysis (PCA) is a zero correlation, rotational transform of these variables
 - ...with some bonus features and properties
- PCA finds a low-dimensional representation of a data set that contains as much of the variation as possible:

Zero Correlation Rotational Transform

Zero Correlation Rotational Transform

 How are the principal components defined in terms of the original variables?

• We get min(n-1,p) principal components in total

- We get min(n-1,p) principal components in total
- Each principal component is a linear combination of the original variables

- We get min(n-1,p) principal components in total
- Each principal component is a linear combination of the original variables
 - We call the converted values scores

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{pi}x_{ip}$$

where z_{i1} is the **score** of the first principal component for the *i*th observation and the ϕ 's are the principal component **loadings**

- We get min(n-1,p) principal components in total
- Each principal component is a linear combination of the original variables
 - We call the converted values scores

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{pi}x_{ip}$$

where z_{i1} is the **score** of the first principal component for the *i*th observation and the ϕ 's are the principal component **loadings**

• First PC has most variation; second PC is the linear combination that has maximal variance and is *uncorrelated* with the first PC and so on...

- We get min(n-1,p) principal components in total
- Each principal component is a linear combination of the original variables
 - We call the converted values scores

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{pi}x_{ip}$$

where z_{i1} is the **score** of the first principal component for the *i*th observation and the ϕ 's are the principal component **loadings**

- First PC has most variation; second PC is the linear combination that has maximal variance and is *uncorrelated* with the first PC and so on...
- How are the PCs determined?

- We get min(n-1,p) principal components in total
- Each principal component is a linear combination of the original variables
 - We call the converted values scores

$$z_{i1} = \phi_{11}x_{i1} + \phi_{21}x_{i2} + \dots + \phi_{pi}x_{ip}$$

where z_{i1} is the **score** of the first principal component for the *i*th observation and the ϕ 's are the principal component **loadings**

- First PC has most variation; second PC is the linear combination that has maximal variance and is *uncorrelated* with the first PC and so on...
- How are the PCs determined?
 - Eigen decomposition!

Another Interpretation of PCA

• Principal components provide low-dimensional linear surfaces that are *closest* to the observations

Another Interpretation of PCA

- Principal components provide low-dimensional linear surfaces that are *closest* to the observations
 - First PC: the **line** in *p*-dimensional space that is *closest* to the *n* observations

Another Interpretation of PCA

- Principal components provide low-dimensional linear surfaces that are *closest* to the observations
 - First PC: the **line** in *p*-dimensional space that is *closest* to the *n* observations
 - First 2 PCs: span the **plane** that is closest to the *n* observations
 - and so on...

• Since PCs are constructed to capture maximal variance in the original data, we want to ensure the process is "fair"

• Since PCs are constructed to capture maximal variance in the original data, we want to ensure the process is "fair"

If Var(X) = 10, then Var(2.54X) will be _____

- Since PCs are constructed to capture maximal variance in the original data, we want to ensure the process is "fair"
- If Var(X) = 10, then Var(2.54X) will be _____
 - 1 smaller
 - larger
 - 3 Not enough information to tell

- Since PCs are constructed to capture maximal variance in the original data, we want to ensure the process is "fair"
- If Var(X) = 10, then Var(2.54X) will be _____
 - 1 smaller
 - larger
 - 3 Not enough information to tell
 - For this reason, it's common practice to individually scale the variables to have mean 0 and standard deviation 1

• Principal component loadings are unique up to a sign flip

- Principal component loadings are unique up to a sign flip
 - The loading vector as a whole is usually what's interpreted
 - The interpretation won't change with a sign flip

- Principal component loadings are unique up to a sign flip
 - The loading vector as a whole is usually what's interpreted
 - The interpretation won't change with a sign flip

• The eigen decomposition process is actually able to tell us the *proportion of variance explained* (PVE) by each principal component!

- The eigen decomposition process is actually able to tell us the *proportion of variance explained* (PVE) by each principal component!
- This is akin to telling us how much information from our original data is captured in a lower dimensional space (i.e. some number of PCs less than *p*)

- The eigen decomposition process is actually able to tell us the *proportion of variance explained* (PVE) by each principal component!
- This is akin to telling us how much information from our original data is captured in a lower dimensional space (i.e. some number of PCs less than *p*)
- For the **Arrests** example:
 - 62.01% variation explained by the first PC (Z_1)
 - 24.74% variation explained by the second PC (Z_2)
 - 8.91% variation explained by the third PC (Z_3)
 - 4.34% variation explained by the fourth PC (Z_4)

Consolidate information present in data, into a lower dimensional space (i.e. using less than *p* variables)

• Popular uses:

- Popular uses:
 - Visualization

- Popular uses:
 - Visualization
 - Dimension reduction (i.e. use PCs instead of raw variables)

- Popular uses:
 - Visualization
 - Dimension reduction (i.e. use PCs instead of raw variables)
 - Principal components regression

- Popular uses:
 - Visualization
 - Dimension reduction (i.e. use PCs instead of raw variables)
 - Principal components regression
 - Really any statistical technique or learning method!

- Popular uses:
 - Visualization
 - Dimension reduction (i.e. use PCs instead of raw variables)
 - Principal components regression
 - Really any statistical technique or learning method!
 - Remember that each PC involves *all* of the original variables ⇒ PCA is not a variable selection procedure!

A Personal Example – Tasseled Cap Transformation

Water
Dense vegetation
Sparse vegetation
Manmade surface
Bare soil

: Data 451 Principal Components Analysis

Table 2. TCT coefficients for Landsat 8 at-satellite reflectance.

Landsat 8 TCT	(Blue) Band 2	(Green) Band 3	(Red) Band 4	(NIR) Band 5	(SWIR1) Band 6	(SWIR2) Band 7
Brightness	0.3029	0.2786	0.4733	0.5599	0.508	0.1872
Greenness	-0.2941	-0.243	-0.5424	0.7276	0.0713	-0.1608
Wetness	0.1511	0.1973	0.3283	0.3407	-0.7117	-0.4559
TCT4	-0.8239	0.0849	0.4396	-0.058	0.2013	-0.2773
TCT5	-0.3294	0.0557	0.1056	0.1855	-0.4349	0.8085
TCT6	0.1079	-0.9023	0.4119	0.0575	-0.0259	0.0252

How Many Principal Components Do We Use?

How Many Principal Components Do We Use?

Cross-validation!

How Many Principal Components Do We Use?

Cross-validation!

• Visual inspection of a scree plot:

• Look for the *elbow*