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Where does IQ come from?

e |n 1904, Charles Spearman noted that children’s
performance across unrelated school subjects, like Classics,
Math, and Music, were positively correlated.

® He hypothesized that all cognitive ability could be traced to
a single “general intelligence” factor, which he called the ¢
factor.

e |ater, 1Q tests were designed to try to measure this g factor.
It attempts to quantify intelligence along a single dimension.
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Identifying the ¢ factor in data
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Identifying the ¢ factor in data
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Identifying the ¢ factor in data
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It is typical to first center the variables so that they have mean O.
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Identifying the ¢ factor in data
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The g factor is a combination of math and verbal skills. It is the
direction in the data of greatest variability. This is called the first

principal component.
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Identifying the ¢ factor in data
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The direction of greatest variability is different from the linear
regression line.
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Identifying the ¢ factor in data

200

100

SAT Math

-100
—200

—300
—-300 —-200 =100 0 100 200
SAT Verbal

We can project the points onto this direction to obtain scores.
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Identifying the ¢ factor in data
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We've now reduced our two-dimensional data to just a single
dimension.
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So What Is PCA?

® Suppose we have variables Xi,..., X,

e Principal components analysis (PCA) is a zero correlation,
rotational transform of these variables
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So What Is PCA?

® Suppose we have variables X1, ..., X,

e Principal components analysis (PCA) is a zero correlation,
rotational transform of these variables
e _.with some bonus features and properties

e PCA finds a low-dimensional representation of a data set
that contains as much of the variation as possible:
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Zero Correlation Rotational Transform
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Zero Correlation Rotational Transform
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e How are the principal components defined in terms of the
original variables?
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Performing PCA

* We get min(n — 1, p) principal components in total
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® \We call the converted values scores
2i1 = Q1141 + G21%40 + -+ + DpiTip

where z;1 is the score of the first principal component for the
1th observation and the ¢’s are the principal component
loadings
e First PC has most variation; second PC is the linear
combination that has maximal variance and is uncorrelated
with the first PC and so on...
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Performing PCA

* We get min(n — 1, p) principal components in total
e Fach principal component is a linear combination of the
original variables
® We call the converted values scores

2i1 = Q1141 + G21%40 + -+ + DpiTip

where z;1 is the score of the first principal component for the
1th observation and the ¢’s are the principal component

loadings
e First PC has most variation; second PC is the linear
combination that has maximal variance and is uncorrelated
with the first PC and so on...
e How are the PCs determined?
® Eigen decomposition!
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Another Interpretation of PCA

® Principal components provide low-dimensional linear
surfaces that are closest to the observations
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Another Interpretation of PCA

® Principal components provide low-dimensional linear
surfaces that are closest to the observations
® First PC: the line in p-dimensional space that is closest to the
n observations
® First 2 PCs: span the plane that is closest to the n
observations
® and so on...
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More Details of PCA

e Since PCs are constructed to capture maximal variance in
the original data, we want to ensure the process is “fair"
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More Details of PCA

e Since PCs are constructed to capture maximal variance in
the original data, we want to ensure the process is “fair"

If Var(X) = 10, then Var(2.54X) will be
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@® larger
® Not enough information to tell
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More Details of PCA

e Since PCs are constructed to capture maximal variance in
the original data, we want to ensure the process is “fair"

If Var(X) = 10, then Var(2.54X) will be
@ smaller

@® larger
® Not enough information to tell

e For this reason, it's common practice to individually scale the
variables to have mean O and standard deviation 1
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More Details of PCA contd.

® Principal component loadings are unique up to a sign flip
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More Details of PCA contd.

® Principal component loadings are unique up to a sign flip

® The loading vector as a whole is usually what's interpreted
® The interpretation won't change with a sign flip
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More Details of PCA contd.

® Principal component loadings are unique up to a sign flip

® The loading vector as a whole is usually what's interpreted
® The interpretation won't change with a sign flip
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PC1 pPC2
Murder 0.5358995 —0.4181809
Assault 0.5831836  —0.1879856
UrbanPop  0.2781909 0.8728062
Rape 0.5434321 0.1673186
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More Details of PCA contd.

e The eigen decomposition process is actually able to tell us
the proportion of variance explained (PVE) by each principal
component!
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More Details of PCA contd.

e The eigen decomposition process is actually able to tell us
the proportion of variance explained (PVE) by each principal
component!

e This is akin to telling us how much information from our
original data is captured in a lower dimensional space (i.e.
some number of PCs less than p)

® [or the Arrests example:

® 452.01% variation explained by the first PC (Z;)

24.74% variation explained by the second PC (Z3)

8.91% variation explained by the third PC (Z3)

4.34% variation explained by the fourth PC (Z,)
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Main Theme of PCA

Consolidate information present in data, into a lower
dimensional space (i.e. using less than p variables)
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Main Theme of PCA

Consolidate information present in data, into a lower
dimensional space (i.e. using less than p variables)

e Popular uses:
® Visualization
e Dimension reduction (i.e. use PCs instead of raw variables)
® Principal components regression
® Really any statistical technique or learning method!
® Remember that each PC involves all of the original variables
= PCA is not a variable selection procedure!
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Greenness.

Greenness

Wetness.

A Personal Example - Tasseled Cap

Transformation
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Table 2. TCT coefficients for Landsat 8 at-satellite reflectance.
- PP Landsat 8
e— (Blue) (Green) (Red) INIR) (SWIRL)  (SWIR2)
TCT Band 2 Band 3 Band 4 Band 5 Band 6 B:
02 02
Brightness 03029 02786 04733 0.5599 0.508 01872
Greenness  =02941 -0243 -05424 0.7276 0.0713 ~0.1608
oy 0% Welness 01511 0.1973 03283 0.3407 07117 ~0.4559
TCT4 -0.8239 0.0849 0.4396 -0.058 02013 -02773
TCTS -03294 0.0557 0.1056 0.1855 ~0.4349 0.8085
TCT6 0.1079 -0.5023 04119 0.0575 ~0.0259 0.0252
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Brightness Brightness
o
06 04 00
® 17718
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How Many Principal Components Do We Use?
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How Many Principal Components Do We Use?

e Cross-validation!
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How Many Principal Components Do We Use?

e Cross-validation!
® Visual inspection of a scree plot:
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e | ook for the elbow

: Data 451 Principal Components Analysis 18/ 18



	Uses of PCA
	


