
. .
Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:
Classification/Supervised Learning

Definitions

Data. Consider a setA = {A1, . . . , An} of attributes, and an additionalcate-
gorical attributeC, which we call aclass attribute or category attribute.

dom(C) = {c1, . . . , ck}. We call each valueci aclass labelor acategory label.

The learning datasetis a relational tableD.

Two formats:

1. Training (data)set. D has schema(A1, . . . , An, C), i.e.,

for each element of the dataset we are given its class label.

2. Test (data)set. D has schema(A1, . . . , An), i.e.,

the class labels of the records inD are not known.

Classification Problem. Given a (training) datasetD, construct aclassifica-
tion/prediction function that correctly predicts the class label for every record
in D.

Classification function= prediction function = classification model= classifier.

Supervised learningbecause training set contains class labels. Thus we can com-
pare (supervise) predictions of our classifier.

Classification Methodology

Näıve Bayes.Estimation of probability that a record belongs to each class.

Neural Netowoks.Graphical models that construct a ”separation function” based
on the training set data.

1

Support Vector Machines (SVMs).Linear models for two-class classifiers.

Association Rules.Infer association rules with class label on the right side.

Decision Trees.Build a tree-like classifier. (key advantage:human-readable!)

Decision Trees

Decision tree-based classifiers aresimpleandefficient.

Decision trees. Let A = {A1, . . . , Ak} are the dataset attributes andC is a class
label. Letdom(C) = {c1, . . . , ck}. A decision treeoverA andC is a treeT =
〈V,E〉 such that,

1. Eachnon-leaf nodev ∈ V is labeled with someAi ∈ A.

2. Eachleaf nodevl ∈ V is labeled with someclass labelci ∈ dom(C).

3. Each edgeE = (v, v′), wherelabel(v) = Ai is labeled with some value
a ∈ dom(Ai).

4. No attributeAi ∈ A can appear more thanonceon each path from root to
leaf.

A decision treecan be used as a classifier as follows:

• Consider a recordt = (a1, a2, . . . , an).

• Start at the root noder of the decision treeT . Let label(r) = Ai. Find the
edgee = (r, v), such thatlabel(e) = t(Ai) = ai, i.e., follow the outgoing
edge fromr that is labeled with the value ofAi in t.

• For nodev visited next, continue the same process: follow the outgoing edge
labeled with the value of thelabel(v) attribute found int.

• When you reach leaf nodel, the labellabel(l) will be theclass(t).

C4.5 Algorithm: Induction of Decision Trees

Te C4.5. Algorithm for decision tree induction was originally proposed by Quin-
lan in [1].

Input/Ouput TheC4.5 algorithm for decision tree induction has three parame-
ters:

Name I/O Explanation
D input the training dataset
A input the list of attributes
T ouput the constructed decision tree

2

Algorithm idea. TheC4.5 Algorithm is a recursive decision tree induction al-
gorithm. The algorithm has the following three main steps:

1. Termination conditions. The algorithm has two termination conditions:

(a) D contains records with the same class labelc. In this case, the algo-
rithm creates a tree that consists of a single node, and assigns to it the
class labelc.

(b) A = ∅: there are no more attributes left to consider. In this case,the
algorithms creates a tree that consists of a single node, andassigns to
it the label of the plurality records inD.

2. Selection of the splitting attribute. The algorithm chooses the attributeAi

to be used to split the dataset.

3. Tree construction. The algorithm does the following:

(a) Creates a tree noder labeledAi.

(b) Splits the datasetD into dom(Ai) subsetsD1, . . . D|dom(Ai)|, and re-
cursively calls itself for each subsetDj , with the reduced list of at-
tributesA − {Ai}.

(c) Creates|dom(Ai)| edges fromr to the roots for treesT1, . . . , T|dom(Ai)|

returned by the recursive calls. Labels each edge with the appropriate
value fromdom(Ai).

(d) Returns the constructed tree.

The pseudocode for theC4. Algorithm is shown in Figure 1.

Selection of the Splitting Attribute

The C4.5. Algorithm relies on an external function to identify the splitting at-
tribute on each step. In this section we discuss how to find splitting attributes.

Information Enthropy. Consider a relational datasetD over a list of attributes
A = {A1, . . . , An, C}, whereC is the class attribute ofD. Let dom(C) =
{c1, . . . ck}. Let Di = {t ∈ D|class(D) = ci}. Thus,D = D1 ∪ D2 ∪ . . . ∪ Ds.

As Pr(C = ci) we denote the probability that a randomly chosen recordt ∈ D

will have the class label ofci. We can see that

Pr(C = ci) =
|Di|

|D|
.

Theenthropy of the datasetD w.r.t. C is defined as follows:

enthropy(D) = −
k

∑

i=1

Pr(C = ci) · log2(Pr(C = ci)).

Enthropyis measured inbits.

(Note: In this computation, we assume that0 · log2(0) = 0.)

3

Algorithm C45 (D, A, T , threshold);
begin // Step 1: check termination conditions
if for all d ∈ D: class(d) = ci then

create leaf noder;
label(r) := ci;
T := r;

else if A = ∅ then
c := find most frequent label(D);
create leaf noder;
label(r) := c;

else //Step 2: select splitting attribute
Ag := selectSplittingAttribute(A,D, threshold);
if Ag = NULL then //no attribute is good for a split
create leaf noder;
label(r) := find most frequent label(D);
T := r;

else // Step 3: Tree Construction
create tree noder;
label(r) := Ag;
foreach v ∈ dom(Ag) do

Dv := {t ∈ D|t[Ag] = v};
if Dv 6= ∅ then

C45(Dv, A − {Ag}, Tv); //recursive call
append Tv to r with an edge labeledv;

endif
endfor

endif
endif

end

Figure 1: C4.5 algorithm for decision tree induction.

function selectSplittingAttribute(A,D,threshold); //uses information gain
begin

p0 := enthropy(D);
for each Ai ∈ A do

p[Ai] := enthropyAi
(D);

Gain[Ai] = p0 − p[Ai]; //compute info gain
endfor
best := arg(findMax(Gain[]));
if Gain[best] >threshold then return best
else return NULL;

end

function selectSplittingAttribute(A,D,threshold); //uses information gain ratio
begin

p0 := enthropy(D);
for each Ai ∈ A do

p[Ai] := enthropyAi
(D);

Gain[Ai] := p0 − p[Ai]; //compute info gain
gainRatio[Ai] := Gain[Ai]/enthropy(Ai); //compute info gain ratio

endfor
best := arg(findMax(gainRatio[]));
if Gain[best] >threshold then return best
else return NULL;

end

Figure 2: selectSplittingAttribute() functions using infomration gain and infor-
mation gain ratio measures.

4

Properties of enthropy. The enthropy of ahomogenousdataset in which each
class label has the same probability of occuring islog2 k, i.e., the number of bits
necessary to representk.

enthropy(D) = −
k

∑

i=1

1

k
· log2

(

1

k

)

= − log2

(

1

k

)

·
k

∑

i=1

1

k
= log2 k

The enthropy of a dataset where only one class label out ofk is present is 0.

enthropy(D) = −
k−1
∑

i=1

0 · log2 0 − 1 · log2 1 = 0.

Enthropy measures the impurity of data. The higher theenthropy, the more
impurethe data is.

Information Gain. Idea: we want to select the attribute that splits the datasetD

into most puresubsets. We introduceinformation gain measure. Given a dataset
D over the listA = {A1, . . . Ak} of attributes, theenthropy ofD after being split
using attributeAi with domaindom(Ai) = {v1, . . . , vs} is defined as:

enthropyAi
(D) =

s
∑

j=1

|Dj |

|D|
· enthropy(Dj),

whereDj = {t ∈ D|t[Ai] = vj}.

The information gain achieved by the split is the difference between the en-
thropy ofD before and after the split:

Gain(D,Aj) = enthropy(D) − enthropyAj
(D).

Information Gain Ratio. Information Gain Ratio is the normalized version of
the information gain measure:

gainRatio(D,Aj) =
Gain(D,Aj)

−
∑s

j=1

(

|Dj |
|D| · log2

|Dj |
|D|

)

(essentially, we normalizeinformation gain by the ”enthropy” of the split itself.)

Using Information Gain and Information Gain Ratio to select splitting at-
tributes

Figure 2 shows the two versions of theselectSplittingAttribute() function. The
first version uses theinformation gain measure to determine the splitting attribute,
while the second version uses theinformation gain ratio .

Both algorithms do the following:

1. Compute the enthropy of the current dataset.

5

2. Compute the enthropy after splitting the dataset using each of the available
attributes.

3. Find the attribute with the bestinformation gain /information gain ratio .

4. If the information gain /information gain ratio exceed thethreshold, the
attribute is returned. Otherwise,NULL is returned, as no attribute leads to a
significant improvement in the enthropy.

Classifier Evaluation

Accuracy Measures

Notation. Let T be a classifier constructed byany supervised learning algorithm
given atraining set D.

Let D′ be atest set, drawn from the same data/distribution as D.

Let t ∈ D′. As T (t) we denote theclass labelsupplied fort by the classifierT .

As class(t) we denote theactual class label oft.

AsDtrue we denote theset of all test cases for which our classifier provides correct
prediction:

Dtrue = {t ∈ D′|T (t) = class(t)}

As Derror we denote theset of all test cases for which our classifier provides
incorrect prediction:

Derror = {t ∈ D′|T (t) 6= class(t)}

Accuracy. Theaccuracyof the classifierT is:

accuracy(T) =
|Dtrue|

|D′|
.

Error rate. Theerror rate of the classifierT is:

errorRate(T) = 1 − accuracy(T) =
|Derror|

|D|
.

Accuracy Measures for Binary Classification

Binary Classifiers. Many classifiers arebinary : i.e., the class variableC has
only two values. A classifiaction problem withdom(C) = {c1, . . . ck}, k > 2 can
be transformed intok classification problems with class variablesC1, C2, . . . , Ck,
such that,dom(Ci) = {0, 1}. Ci = 1 meansC = ci.

6

Classification Errors. Consider a binary classification problem with the class
variableC, dom(C) = {0, 1}, whereC = 1 is interpreted as”record belongs to
classC” andC = 0 is interpreted as”record does not belong to classC.

Let T be a classifier forC. Let D′ be a test dataset. Givent ∈ D, we can observe
four possibilities:

1. True Positive: T (t) = class(t) = 1;
2. True Negative: T (t) = class(t) = 0;
3. False Positive:T (t) = 1; class(t) = 0;
4. False Negative:T (t) = 0; class(t) = 1;

There aretwo types of errors of classification:

1. Type I error: a.k.a. error of commission a.k.a. false positive: classifier
incorrectly classifies a tuple as belonging to classC.

2. Type II error: a.k.a. error of omission a.k.a. false negative: classifier
incorrectly classifies a tuple as NOT belongingto classC.

Notation. Conisder the following notation:

1. DTP : set of alltrue positives in D′; TP = |DTP |;

2. DTN : set of alltrue negativesin D′; TN = |DTN |;

3. DFP : set of allfalse positivesin D′; FP = |DFP |;

4. DFN : set of allfalse negativesin D′; FN = |DFN |;

Confusion Matrix. The information about the accuracy of abinary classifier is
usually arranged in a form ofconfusion matrix:

Classified Positive Classified Negative

Actual positive TP FN

Actual negative FP TN

Precision. Precisionof the classifier is the percentage of the correctlypositively
classified records in the set of all positively classified records:

precision(T) =
TP

TP + FP
.

Precision measureshow accurately the classifier selects positive examples, it
reaches 100% when the classifieradmits no false positives.

Recall. Recallof the classifier is the percentage of all correctlypositivelyclassi-
fied records in the set of all actual positive records:

recall(T) =
TP

TP + FN
.

Recall measureshow successful the classifier is in correctly identifying all posi-
tive records.It reaches 100% when the classifieradmits no false negatives.

7

Note: Precisionandrecall make senseonly when combined together.

It is easy to build a classifier with 100% precision:T(t) = 0 for all t ∈ D′ guarantees
that. But this classifier will have recall of 0. It is easy to build a classifier with
100% recall:T(t) = 1 for all t ∈ D′ guarantees that.But this classifier will have
small precision.

PF. ThePF measure is defined as:

PF (T) =
FP

FP + TN
.

PF measures themisclassification rate: the percentage of recordsnot in classC
that wasincorrectly classified.

F-measure. TheF-measureis the harmonic mean of precision and recall:

F (T) =
2

1
precision(T) + 1

recall(T)

=
2 · precision(T) · recall(T)

precicion(T) + recall(T)
.

F-measurecombines precision and recall into a single number by balancing
them against each other.

In some situations, one of the two measures (precision or recall) is more impor-
tant than the other.F-measurecan be skewed to favor each. TheF2-measure
below assumes recall is twice as valuable as precision. TheF0.5-measurebelow
assumes precision is twice as valuable as recall.

F2(T) =
5 · precision(T) · recall(T)

4 ∗ precision(T) + recall(T)
.

F0.5(T) =
1.25 · precision(T) · recall(T)

0.25 ∗ precision(T) + recall(T)
.

The formula forFβ , whereβ represents the relative importance of recall over
precision is:

Fβ(T) =
(1 + β2) · precision(T) · recall(T)

β2 ∗ precision(T) + recall(T)
.

Evaluation Techniques

In a typical situation, you are given atraining set D, and are asked to produce a
classifier for it.

If all records from D are used to create a classifier, there will be no way to
INDEPENDENTLY test its accuracy.

8

Holdout set. Divide D into two sets:D = Dtrain ∪ Dtest; Dtrain ∩ Dtest = ∅.

Dtest is called theholdout set.

Create a classifierT usingDtrain as the training set.TestT usingDtest.

Holodout setselection:

• Random sampling. Select a fractionx. Randomly samplex% of records
from D, put them inDtest.

Commonly, you use around 90% ofD as the training set, reserving the re-
maining10% for the holdout set.

• Time slices. If D consists of ”old” data and ”new” data, then, the training
set can include all of the ”old” data, while the holdout set can include the
”new” data. (e.g., in situations where new records appear every day).

Multiple random sampling. This technique is used whenD is small.

• Select some numberM of repetitions.

• PerformM random samplings of aholdout set from D. Run classifier con-
struction on the remaining setDtrain. Compute theaccuracy of the classi-
fier for the current sample.

• Compute the finalaccuracy as the meanaccuracy over all samples.

Multiple random sampling allows us to avoidflukes(or, at least, to downgrade
their effects).

Cross-Validation. This is a variant ofmultiple random sampling that uses only
one random assignment of records, but performs multiple classifications.

• Selectn – the number ofslicesof data inD.

• Usingrandom samplingsplit D into n slicesof equal (or almost equal) size.

• Peformn classification procedures. On stepi, use sliceDi as theholdout
set, while using all othern − 1 slices as thetraining set.

Note: Standard cross-validations used in practice are10-fold, 5-fold andleave-
one-outcross-validations.

References

[1] J.R. Quinlan.C4.5: Program for Machine Learning, Morgan Kaufman,
1992.

9

