Data Mining:
 Classification/Supervised Learning Examples

Open Houses

A family is looking to buy a house. Their search leads them to a list of open houses in their town that they can visit. We have information about the number of bedrooms, existance of basement, type of floorplan and geographical location of the house. We also have information on whether the family chose to visit the open house.

Houseld	Bedrooms	Basement	Floorplan	Location	Visited
1	3	No	traditional	South	No
2	3	Yes	traditional	South	Yes
3	3	Yes	open	North	No
4	3	Yes	traditional	North	No
5	3	No	open	North	No
6	3	Yes	traditional	South	Yes
7	3	Yes	open	South	No
8	3	No	traditional	South	No
9	4	No	traditional	South	Yes
10	4	Yes	open	North	No
11	4	Yes	open	South	Yes
12	4	No	traditional	North	No
13	4	No	open	South	Yes
14	4	Yes	open	South	Yes
15	4	No	traditional	North	No
16	4	Yes	open	North	No

Our goal is to build a decision-tree classifier that predicts whether a faimily will visit a specific house.

C4.5. for the Open Houses dataset

Step 1. Determine the root node. Input: full dataset D, Attributes: $\{$ Bedrooms, Basement, Floorplan, Location\}.
Note: Termination conditions on step 1 are false.
Info Gain computation.
$\operatorname{Pr}($ Visited $=$ Yes $)=\frac{6}{16}=0.375$.
$\operatorname{Pr}($ Visited $=$ No $)=\frac{10}{16}=0.625$.
enthropy $(D)=-\frac{3}{8} \cdot \log _{2} \frac{3}{8}-\frac{5}{8} \cdot \log _{2} \frac{5}{8}=0.9544$
Bedrooms. $D_{1}=\{1,2,3,4,5,6,7,8\} ; D_{2}=\{9,10,11,12,13,14,15,16\}$.
enthropy $\left(D_{1}\right)=-\frac{2}{8} \log _{2} \frac{2}{8}-\frac{6}{8} \log _{2} \frac{6}{8}=0.811$
enthropy $\left(D_{2}\right)=-\frac{4}{8} \log _{2} \frac{4}{8}-\frac{4}{8} \log _{2} \frac{4}{8}=1$
enthropy $_{\text {Bedrooms }}(D)=\frac{8}{16} \cdot 0.811+\frac{8}{16} \cdot 1=0.9055$

$$
\operatorname{Gain}_{\text {Bedrooms }}(D)=0.9544-0.9055=0.0489
$$

Basement. $D_{1}=D_{\text {Yes }}=\{2,3,4,6,7,10,11,14,16\} ; D_{2}=D_{\text {No }}=\{1,5,8,9,12,13,15\}$.
$\operatorname{Pr}_{D_{1}}($ Visited $=$ Yes $)=\frac{4}{9}$
$\operatorname{Pr}_{D_{2}}($ Visited $=$ Yes $)=\frac{2}{7}$
enthropy $\left(D_{1}\right)=-\frac{4}{9} \log _{2} \frac{4}{9}-\frac{5}{9} \log _{2} \frac{5}{9}=0.99107$
enthropy $\left(D_{2}\right)=-\frac{2}{7} \log _{2} \frac{2}{7}-\frac{5}{7} \log _{2} \frac{5}{7}=0.8631$
enthropy $_{\text {Basement }}(D)=\frac{9}{16} \cdot 0.99107+\frac{7}{16} \cdot 0.8631=0.9350$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.9544-0.9350=0.0193
$$

Floorplan. $D_{1}=D_{\text {traditional }}=\{1,2,4,6,8,9,12,15\} ; D_{2}=D_{\text {Open }}=\{3,5,7,10,11,13,14,16\}$.
$\operatorname{Pr}_{D_{1}}($ Visited $=Y e s)=\frac{3}{8}$
$P_{D_{2}}($ Visited $=$ Yes $)=\frac{3}{8}$
enthropy $\left(D_{1}\right)=-\frac{3}{8} \log _{2} \frac{3}{9}-\frac{5}{8} \log _{2} \frac{5}{8}=0.9544$
enthropy $\left(D_{2}\right)=-\frac{3}{8} \log _{2} \frac{3}{9}-\frac{5}{8} \log _{2} \frac{5}{8}=0.9544$
enthrop $y_{\text {Floorplan }}(D)=\frac{8}{16} \cdot 0.9544+\frac{8}{16} \cdot 0.9544=0.9544$

$$
\operatorname{Gain}_{\text {Floorplan }}(D)=0.9544-0.9544=0
$$

Location. $D_{1}=D_{\text {North }}=\{3,4,5,10,12,15,16\} ; D_{2}=D_{\text {South }}=\{1,2,6,7,8,9,11,13,14\}$.
$\operatorname{Pr}_{D_{1}}($ Visited $=$ Yes $)=\frac{0}{7}=0$
$\operatorname{Pr}_{D_{2}}($ Visited $=$ Yes $)=\frac{6}{9}$
enthropy $\left(D_{1}\right)=-\frac{0}{7} \log _{2} \frac{0}{7}-\frac{7}{7} \log _{2} \frac{7}{7}=0$
enthropy $\left(D_{2}\right)=-\frac{6}{9} \log _{2} \frac{6}{9}-\frac{3}{9} \log _{2} \frac{3}{9}=0.918$
enthropy Location $(D)=\frac{7}{16} \cdot 0+\frac{9}{16} \cdot 0.918=0.516$

$$
\operatorname{Gain}_{\text {Location }}(D)=0.9544-0.516=0.438
$$

Step 1 result: Location yields the best Information Gain.
Splitting the dataset on Location attribute: $D_{1}=D_{\text {North }}=\{3,4,5,10,12,15,16\}$;
$D_{2}=D_{\text {South }}=\{1,2,6,7,8,9,11,13,14\}$.

Step 2: Input: $D_{1}=\{3,4,5,10,12,15,16\}$, Attributes: $\{$ Bedrooms, Basement, Floorplan\}.
Note: This dataset is homogenous: no houses from D_{1} were visited.
$\operatorname{Class}\left(D_{1}\right)=\operatorname{No}$.

Step 3: Input $D_{2}=D_{\text {South }}=\{1,2,6,7,8,9,11,13,14\}$. Attributes: $\{$ Bedrooms, Basement, Floorplan $\}$. enthropy $\left(D_{2}\right)=0.918$
Bedrooms. $D_{21}=D_{\text {South, } 3 \text { br }}=\{1,2,6,7,8\} ; D_{22}=D_{\text {South }, 4 b r}\{9,11,13,14\}$.
$\operatorname{Pr}_{D_{21}}($ Visited $=$ Yes $)=\frac{2}{5}$
$\operatorname{Pr}_{D_{22}}($ Visited $=$ Yes $)=\frac{4}{4}$
enthropy $\left(D_{21}\right)=-\frac{2}{5} \log _{2} \frac{2}{5}-\frac{3}{5} \log _{2} \frac{3}{5}=0.5743$
enthropy $\left(D_{22}\right)=-\frac{4}{4} \log _{2} \frac{4}{4}-\frac{0}{4} \log _{2} \frac{0}{4}=0$
enthropy $_{\text {Bedrooms }}\left(D_{2}\right)=\frac{5}{9} \cdot 0.5743+\frac{4}{9} \cdot 0=0.319$

$$
\operatorname{Gain}_{\text {Bedrooms }}(D)=0.918-0.319=0.599
$$

Basement. $D_{21}=D_{\text {South,Yes }}=\{2,6,7,11,14\} ; D_{22}=D_{\text {No }}=\{1,8,9,13\}$.
$\operatorname{Pr}_{D_{21}}($ Visited $=$ Yes $)=\frac{4}{5}$
$\operatorname{Pr}_{D_{22}}($ Visited $=$ Yes $)=\frac{2}{4}$
enthropy $\left(D_{21}\right)=-\frac{4}{5} \log _{2} \frac{4}{5}-\frac{1}{5} \log _{2} \frac{1}{5}=0.7219$
enthropy $\left(D_{22}\right)=-\frac{2}{4} \log _{2} \frac{2}{4}-\frac{2}{4} \log _{2} \frac{2}{4}=1$
enthropy Basement $(D)=\frac{5}{9} \cdot 0.7219+\frac{4}{9} \cdot 1=0.8455$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.918-0.8455=0.0725
$$

Floorplan. $D_{21}=D_{\text {South,traditional }}=\{1,2,6,8,9\} ; D_{22}=D_{\text {No }}=\{7,11,13,14\}$.
$\operatorname{Pr}_{D_{21}}($ Visited $=$ Yes $)=\frac{3}{5}$
$\operatorname{Pr}_{D_{22}}($ Visited $=$ Yes $)=\frac{3}{4}$
enthropy $\left(D_{21}\right)=-\frac{3}{5} \log _{2} \frac{3}{5}-\frac{2}{5} \log _{2} \frac{2}{5}=0.9709$
enthropy $\left(D_{22}\right)=-\frac{3}{4} \log _{2} \frac{3}{4}-\frac{1}{4} \log _{2} \frac{1}{4}=0.8112$
enthropy $_{\text {Basement }}(D)=\frac{5}{9} \cdot 0.9709+\frac{4}{9} \cdot 0.8112=0.8999$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.918-0.8999=0.0181
$$

Step 3 result: Bedrooms yields the best Information Gain.

Step 4: $\quad D_{21}=D_{\text {South }, 3 \text { br }}=\{1,2,6,7,8\}$; Attributes: $\{$ Basement, Floorplan $\}$. $\operatorname{enthropy}\left(D_{21}\right)=0.7219$
Basement. $D_{211}=D_{\text {South,3br,Yes }}=\{2,6,7\} ; D_{212}=D_{\text {South,3br,No }}=\{1,8\}$.
$\operatorname{Pr}_{D_{211}}($ Visited $=\mathrm{Yes})=\frac{2}{3}$
$\operatorname{Pr}_{D_{212}}($ Visited $=Y e s)=\frac{0}{2}=0$
enthropy $\left(D_{211}\right)=-\frac{2}{3} \log _{2} \frac{2}{3}-\frac{1}{3} \log _{2} \frac{1}{3}=0.918$
enthropy $\left(D_{212}\right)=-\frac{0}{2} \log _{2} \frac{0}{2}-\frac{2}{2} \log _{2} \frac{2}{2}=0$
enthropy $_{\text {Basement }}(D)=\frac{3}{5} \cdot 0.918+\frac{2}{5} \cdot 0=0.5509$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.7219-0.5509=0.1709
$$

Floorplan. $D_{211}=D_{\text {South,3br,traditional }}=\{1,2,6,8\} ; D_{212}=D_{\text {South,3br,open }}=$ \{7\}.
$\operatorname{Pr}_{D_{211}}($ Visited $=\mathrm{Yes})=\frac{2}{4}$
$\operatorname{Pr}_{D_{221}}($ Visited $=$ Yes $)=\frac{0}{1}=0$
enthropy $\left(D_{211}\right)=-\frac{2}{4} \log _{2} \frac{2}{4}-\frac{2}{4} \log _{2} \frac{2}{4}=1$
enthropy $\left(D_{212}\right)=-\frac{0}{1} \log _{2} \frac{0}{1}-\frac{0}{1} \log _{2} \frac{0}{1}=0$
enthropy $_{\text {Basement }}(D)=\frac{4}{5} \cdot 1+\frac{1}{5} \cdot 0=0.8$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.7219-0.8=-0.781
$$

Step 4 result: Basement yields the best Information Gain

Step 5: $\quad D_{211}=D_{\text {South,3br,Yes }}=\{2,6,7\}$; Attributes: $\{$ Floorplan $\}$
$\operatorname{enthropy}\left(D_{211}\right)=0.918$

Floorplan. $D_{2111}=D_{\text {South,3br,Yes,traditional }}=\{2,6\} ; D_{2112}=D_{\text {South,3br,Yes, open }}=$ \{7\}.
$\operatorname{Pr}_{D_{2111}}($ Visited $=$ Yes $)=\frac{2}{2}=1$
$\operatorname{Pr}_{D_{2112}}($ Visited $=$ Yes $)=\frac{0}{1}=0$
enthropy $\left(D_{2111}\right)=-\frac{2}{2} \log _{2} \frac{2}{2}-\frac{0}{2} \log _{2} \frac{0}{2}=0$
enthropy $\left(D_{221}\right)=-\frac{0}{1} \log _{2} \frac{0}{1}-\frac{0}{1} \log _{2} \frac{0}{1}=0$
enthropy Basement $(D)=\frac{2}{3} \cdot 0+\frac{2}{3} \cdot 0=0$

$$
\operatorname{Gain}_{\text {Basement }}(D)=0.918-0=-0.918
$$

Step 5: result Floorplan achieves significant Information gain.

Steps 6 and 7: $\quad D_{2111}=D_{\text {South,3br,Yes,traditional }}=\{2,6\}$ and $D_{2112}=D_{\text {South, } 3 \mathrm{br}, \text { Yes, }, \text { open }}=$ $\{7\}$: the list of attributes is exhausted,
$\operatorname{Class}\left(D_{2111}\right)=$ Yes.
$\operatorname{Class}\left(D_{2112}\right)=$ No.

Step 8: Input: $D_{22}=D_{\text {South }, 4 b r}\{9,11,13,14\}$. Attributes: $\{$ Basement, Floorplan $\}$.
$\operatorname{Pr}_{D_{22}}($ Visited $=\mathrm{Yes})=1$, therefore:
$\operatorname{Class}\left(D_{22}\right)=$ Yes.

Resulting Tree: Resulting tree is depicted below:

