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Link Analysis in Graphs: PageRank

Link Analysis

Graphs

Recall definitions fromDiscrete math andgraph theory.

Graph. A graph G is a structure〈V,E〉, where

• V = {v1, . . . , vn} is a finite set ofvertices or nodes;

• E = {(v,w)|v,w ∈ V }, is a set ofpairs of vertices callededges.

Undirected and directed graph. In a directed graph, an edgee = (v,w) is
interpreted as aconnection from v to w but not a connection from w to v.

In anundirected graph, an edgee = (v,w) is interpreted as a connectionbetween
v andw.

Representations. Graphs can be represented in a number of ways:

• Set notation. A representation of a graph that follows the definition above.
Example.G = 〈{A,B,C,D,E}, {(A,B), (A,C), (A,E), (B,C), (B,E), (C,D)}〉.

• Graphical representation. A graph can be represented as a drawing. Each
node is drawn as apoint or circle on a plane, and eachedgeis a line con-
necting the representations of its two vertices. To draw adirected graph,
arrows are added to the edge lines to point from the first vertex in theedge
to the second.

Example. Figure 1 shows the graphical representations ofG in the cases
whenG is directed and undirected.
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Figure 1: Undirected (left) and directed (right) graphs.

• Matrix. A graph can be represented as anadjacency matrix MG whose
rows and columns are vertices. If edge(vi, vj) ∈ E, MG[i, j] = 1, other-
wise,MG[i, j] = 0. Undirected graphs have symmetrical adjacency matrices
(or, alternatively, only uppre diagonal portions of those matrices are consid-
ered). Matrices for directed graphs need not be symmetric.

Example. The adjacency matrices for graphG in undirected and directed
cases:
Undirected G:
G A B C D E
A — 1 1 0 1
B 1 — 1 0 1
C 1 1 — 1 0
D 0 0 1 — 0
E 1 1 0 0 —

Directed G:
G A B C D E
A — 1 1 0 1
B 0 — 1 0 1
C 0 0 — 1 0
D 0 0 0 — 0
E 0 0 0 0 —

• Lists. A graph can be represented by an associative array ofadjacency lists.
The domain of the arrayAG is V . Forv ∈ V , AG[v] lists all w ∈ V , such
that(v,w) ∈ E.

Example. The adjacency lists for the undirected and directed versions of
graphG are shown below:

Undirected G:
A: B,C,E
B: A,C,E
C: A,B,D
D C
E A,B

Directed G:
A: B,C,E
B: C,E
C: D
D
E

Labeled Graphs. A labeled graph G is a graphG = 〈V,E〉, whereE =
{(v,w, l)}, wherev,w ∈ V are vertices connected by the edge andl is a label.
The domain for the set of possible labels is usually specifiedup-front.

Egde labels can be used to specify thelength of a connection, cost to traverse the
edge, type on edge and many other properites.

Graphs can have additionaledge andvertex labels.
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Properties of Graphs.

Path. A path in a graphG = 〈V,E〉 is a sequencep = e1, e2, . . . es of edges,
e1 = (w1, w

′

1
), . . . , es = (ws, w

′

s), such thatw′

1
= w2, w

′

2
= w3, . . . w

′

s−1
= ws.

In undirected graphs p is called apath between w1 and w′

w. In directed graphs p

is called apath from w1 to w′

s.

Connected Graphs. A graphG = 〈E,G〉 is calledconnectediff for any pair
vi, vj ∈ V , there exists a pathp betweenvi andvj (or, fromvi to vj).

Shortest path. The length of a pathp in a graphG is the number of edges in it.

A shortest pathbetween two verticesv andw is a path that starts inv and ends in
w with the smallest length (number of edges in it).

Complete graphs. A graphG = 〈V,E〉 is completeiff for all verticesv,w ∈ V ,
(v,w) ∈ E.

Vertex degrees. Let G = 〈V,E〉 be anundirected graph. Thedegree of a node
v ∈ V in G is defined as

degree(v) = |{(v, v′) ∈ E|v′ ∈ V }|,

i.e., it is thenumber of edges that connect v to other vertices in the graph.

Let G = 〈V,E〉 be adirected graph. Thein-degree of a nodev ∈ V in G is
defined as

in − degree(v) = |{(v′, v) ∈ E|v′ ∈ V }|,

i.e. thenumber of edges in G that end at v.
Theout-degreeof a nodev ∈ V in G is defined as

out − degree(v) = |{(v, v′) ∈ E|v′ ∈ V }|,

i.e., it is thenumber of edges that start in v.

Graphs and Social Networks

Social entity. A social entity is acommunity, organization or setting involving a
collection ofinteracting actors.

Actors. In different social entities actors may be:

• Humans. (e.g., employees in a company).

• Groups of humans (e.g., sports teams).

• Legal or political entities (e.g., companies or states).

• Inanimate ojects (e.g., individual computers).

• Virtual objects (e.g., web pages or files).
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Social Network. A social network of a social entity is a structure documenting
interactions between actors within the entity.

Typically, social networks are represented as graphs.A social network graph
SN = 〈V,E〉 is constructed as follows:

• V is the set ofactors of the social entity.

• E is the set ofinteractions between the actors in the entity. I.e.,(v,w) ∈ E

iff, actorsv andw have an interaction that is tracked by the social network.

Interactions can besymmetric, in which caseSN is an undirected graph, or
assymetric, in which caseSN is a directed graph.

Examples. Examples of social networks:

• Business interactions. Email exchanges between employees of a company.

• Social interactions. ”Friendship” relationship onfacebook.

• Academic interactions. Citation of a paper by another paper. Co-authoring
of papers by researchers.

• Relationship interactions. Kinship relationships between people.

• Kevin Bacon game. Actors having roles in the same movie.

• Web page interactions. Links from one web page to another.

PageRank via Web Traversal

Web Search specifics. Compared to ”traditional” Information Retrieval,web
search has the following properties:

• Huge document collection. (world wide web is the biggest document col-
lection).

• No ”golden set”. Web is unobservable, hence, we cannot find the sets of all
relevant documents for the queries.

• Only few links visited. Only the top 20-40-100 links are of any importance.
Users rarely venture beyond in search of relevant web pages.

• Web pages are linked!Can this be used to improve search?

• Web page owners are not trustworthy. Search engine spamming and
(somewhat less horrible)search engine optimization attempt to circumvent
the results of web search on certain queries.

Prestige. Idea: agood web search engine must combine discovery of pages that
contain all/most query terms withrobust ranking , which promotes important,
high-quality, reliable pagesto the top.Prestigeis a measure ofweb page impor-
tance.
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PageRank. PageRank is a procedure for computing theprestige of each web
pages in a collection.

There is a number of definitions/derivations for the PageRank computation. To
illustrate how it works, we will use the more simple definition.

Web as a graph. We treat World Wide Web as asocial network, whereindivid-
ual web pages(urls) are nodes, or actors, andhypertext links between them are
interactions.

More formally, consider the directed acyclic graphGWWW = {V,E}. The setV
of vertices is the list of individual web pages (urls). An edge (v,w) ∈ E iff the
web pagev has in its body ananchor tag <a href="URL"> whereURL is the
URL of the web pagew.

Given a web pagei ∈ V , The setI(i) of in-links is the set of all edgese ∈ E, such
thate = (v, i) for somev ∈ V .

Given a web pagei ∈ V , the setO(i) of out-links is the set of all edgese ∈ E,
such thate = (i, v) for somev ∈ V .

Note: often, only the in-links and out-links from web pages located on a different
site are included in I(i) and O(i).

Surfing the web. PageRank is a way of modeling the behavior of a web surfer in
a single browser window. In particular,PageRank models the following traversal:

PageRank Traversal:

1. The user starts surfing the web from some,randomly selected page from V a.

2. On each step, the user observes some web pagei. With probability d ∈ (0, 1) (s)he chooses
to click on any of the links available on the page (assuming the page has at least one out-
link).

3. Each link found on the pagei can be selected with the same probability.

4. With probability 1 − d the user gets tired of surfing the web by following links and instead
goes directlyto a randomly selected web page from the collection V .

5. If a web page has no out-links, the user simply goesto a randomly selected web page from
the collection V .

aPageRank actually allows to relax this condition and start from some page, randomly selected from a predefined
collection of pages: a (typically small) subset of the entire web page collection.

PageRank defined. ThePageRankof a pagei ∈ V is theprobability of even-
tually reaching pagei via the traversal procedureoutlined above[1].

Deriving PageRank

Let p(i) be theprobability of reaching web page i (i.e., the PageRank of page
i). Let I(i) = {j1, . . . js} be the set of all web pages which linkto i. Let the
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probabilities of reaching each of those pages bep(j1), . . . , p(js) respectively. Also,
let O(jk) be the set ofall outbound edges from jk.

Assumption: All web pages inV have at least one out-link.

• Suppose we have reached pagej1. From that page, with probabilityd, we
elect to follow on of the links.j1 has|O(j1)| out-links on it, so,with prob-
ability

p(i|j1, follow links) =
1

|O(j1)|

we can reach web pagei. Sincep(follow links) = d, we obtain:

p(i|j1) = d ·
1

|O(j1)|
.

• Similar reasoning for all otherj ∈ I(i) yields

p(i|jk) = d ·
1

|O(jk)|
.

• We can reach pagei in one of only two ways:

1. By following a link from one ofj1, . . . , js.

2. By randomly selectingi when the user chooses to jump (i.e. not follow
a link from a current page).

• We obtain the following formula for computing the probability p(i):

p(i) = (1 − d) ·
1

|V |
+ (p(i|j1) · p(j1) + . . . + p(i|js) · p(js)).

Figure 2 illustrates how these probabilities are computed.From here, substi-
tutingp(i|jk) we obtain:

p(i) = (1 − d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk
|
· p(jk).

Thus,

pageRank(i) = (1 − d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk
|
· pageRank(jk). (1)

Note, that this is arecursive definition.

Computing PageRank

From formula (1), we see that in order to compute PageRank of apage, we need to
know the PageRank of its ”ancestors”. A standard way to modelsuch computation
is to perform it iteratively.
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Figure 2: Computing the probability of reaching a web page.

PageRank via iterative process. The traditional iterative algorithm for PageR-
ank uses the following iterative procedure:

pageRank0(i) =
1

|V |
for alli ∈ V (2)

pageRankr(i) = (1 − d) ·
1

|V |
+ d ·

s
∑

k=1

1

|Ojk
|
· pageRankr−1(jk). (3)

Stop when :

(

∑

i∈V

(pageRankr(i) − pageRankr−1(i))

)

< ǫ (4)
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