Information Retrieval
Extending Vector Space Model

Vector Space Model for IR can be extended/augmented in a number of ways:

- Feedback processing.
- Thesaurus for matching synonyms/similar words.
- Inverted Indexes for improving retrieval speed.
- Postings files for proximity queries.

Feedback Processing

Relevance feedback processing is a collection of IR techniques that use relevance judgements obtained from humans\(^1\) to refine (and, in theory, improve) the results of a retrieval procedure.

Process. Let \(q\) be a user query to a document collection \(D\). Suppose the query returns the set \(D_q\) of documents.

A human analyst (user of the IR system) then examines some of the documents in the set \(D_q\) and identifies two sets \(D^r_q\): a set of relevant documents and \(D^{irr}_q\): the set of irrelevant documents. Note that, we expect that

\[
D_q - (D^r_q \cup D^{irr}_q) \neq \emptyset.
\]

Idea. Change the representation of the query \(q\) to retrieve more documents like those in \(D^r_q\), exclude documents that are in \(D^{irr}_q\), and not retrieve documents similar to them.

\(^1\)Usually, those who originated the IR query.
Rocchio relevance feedback processing method. The query vector \(q \) is replaced with a new vector \(q_e \) which:

- Emphasizes the keywords found in documents from \(D^r_q \).
- De-emphasizes the keywords found in documents from \(D^{irr}_q \).

\[
q_e = \alpha \cdot q + \beta \frac{|D^r_q|}{\sum_{d_r \in D^r_q} d_r} \sum_{d_r \in D^r_q} d_r - \gamma \frac{|D^{irr}_q|}{\sum_{d_i \in D^{irr}_q} d_i} \sum_{d_i \in D^{irr}_q} d_i.
\]

Here, \(\alpha, \beta \) and \(\gamma \), often taken so that \(\alpha + \beta + \gamma = 1 \), represent respectively, the importance of the original query, the importance of the positive information and the importance of the negative information.

Notes. Rocchio feedback processing introduces the potential of **negative keyword weights**. A negative keyword weight in a query vector means that the lack of that keyword in a document is important w.r.t. the relevance judgement. Additionally, if \(\alpha + \beta + \gamma > 1 \), the absolute values of keyword weights will grow (especially after a few iterations of the feedback method).

Variations. A number of variations on Rocchio’s method.

- No negative feedback: \(\gamma = 0 \)
 \[
 q_e = \alpha \cdot q + \beta \frac{|D^r_q|}{\sum_{d_r \in D^r_q} d_r} \sum_{d_r \in D^r_q} d_r.
 \]

- Diminished negative feedback. Only use one vector from \(D^{irr}_q \):
 \[
 q_e = \alpha \cdot q + \beta \frac{|D^r_q|}{\sum_{d_r \in D^r_q} d_r} \sum_{d_r \in D^r_q} d_r - \gamma \cdot d^{max}_{irr},
 \]
 where \(d^{max}_{irr} \in D^{irr}_q \) is the highest ranked irrelevant document.

Blind Relevance Feedback. Otherwise known as **pseudo relevance feedback**. Let IR system retrieve the set \(D_q \) of documents given query \(q \). Assume that the top \(k << |D_q| \) documents are relevant and perform Rocchio’s feedback (w/o the negative information) transformation of \(q \).

This is similar to **boosting**.

Use of Thesaurus

All methods discussed thus far will retrieve a document if it contains **at least one keyword (stem)** specified in the query.

Thesauri help alleviate this issue.
Simple Thesaurus. A simple thesaurus is a collection of triples

\[(t_i, t_j, \alpha)\]

where \(t_i, t_j \in V\) are two terms from the vocabulary and \(\alpha \in (0, 1]\) is the degree of similarity.

If \(\alpha = 1\), \(t_i\) and \(t_j\) are exact synonyms. E.g. ("person", "human", 1.00) means that words "person" and "human" should be treated as full synonyms.

If \(\alpha < 1\), it means that \(t_i\) and \(t_j\) are similar, but their similarity does not rise to the level of complete synonymity. E.g., we can have ("car", "Toyota", 0.5), because we know that a "Toyota" is (typically) a car, but not every "car" is a Toyota.

Computing similarity. In the presence of a simple thesaurus, we need to compute similarity between a document and a query in a different way. Let \(T = \{(t_i, t_k, \alpha_{ik})\}\) be a simple thesaurus.

\[
sim(d_j, q) = \frac{\sum_{i=1}^{M} d_{ij} \cdot q_i + \sum_{(t_i, t_k, \alpha_{ik}) \in T} \alpha_{ik} \cdot d_{ij} \cdot q_k}{\sqrt{\sum_{i=1}^{M} d_{ij}^2 \cdot \sum_{i=1}^{M} q_i^2}}.
\]

Note. We can treat a simple thesaurus as both symmetric and asymmetric. If a simple thesaurus is symmetric, then \((t_i, t_k, \alpha) \in T\) implies that \((t_k, t_i, \alpha) \in T\). If a simple thesaurus is asymmetric, then \((t_i, t_k, \alpha) \in T\) does not imply \((t_k, t_i, \alpha) \in T\). In this case it is possible that \((t_k, t_i, \alpha') \in T\) for some \(\alpha' \neq \alpha\), or that there is no entry of the form \((t_k, t_i, ..)\) in \(T\) at all.

In all cases, the formula above will work.

Inverted Indexes and Postings Files

Without special preparations, each time a query \(q\) is given to an IR system, the system must compute and sort all \(\sim(d_1, q), \sim(d_2, q), \ldots, \sim(d_n, q)\). When \(n\) is very large, this is a costly operation.

Inverted Index is a data structure that allows for more efficient query processing. A collection of document vectors \(D = \{d_1, \ldots, d_n\}\) can be thought of as a mapping from document Ids \(d_1, \ldots, d_n\) to term ids \(t_1, \ldots, t_m\). An inverted index is a mapping from terms to documents that contain them.

Simple Inverted Index is a list \(\{(t_i, (d_{i_1}^1, \ldots, d_{i_k}^l))\}\), where \(t_i \in V\) is a vocabulary term and \(d_{i_1}^1, \ldots, d_{i_k}^l\) are all documents in \(D\) that contain \(t_i\).
Example. Consider the following three documents:

\(d_1\) When I say stop, continue.

\(d_2\) When I say stop, stop and turn around.

\(d_3\) Around the bend, the river continued.

Assume for a moment that stopword removal removes "the" and "and" and that "continued" stems to "continue". Then, the simple inverted index for this document collection will be:

- **when** \(d_1, d_2\)
- **I** \(d_1, d_2\)
- **say** \(d_1, d_2\)
- **stop** \(d_1, d_2\)
- **continue** \(d_1, d_3\)
- **turn** \(d_2\)
- **around** \(d_2, d_3\)
- **bend** \(d_3\)
- **river** \(d_3\)

Search using Inverted Index. Let \(D\) be a document collection, \(V\) be its vocabulary, and \(I\) be its inverted index. Let \(I(t_i)\) denote the list of documents that contain \(t_i\). Given a query \(q\), its evaluation can proceed as follows:

- **Step 1: Listings.** For each query term \(t_i\) present in \(q\), retrieve \(I(t_i)\).
- **Step 2: Merge.** Compute the intersection of all retrieved \(I(t_i)\)s. (If necessary, compute the union of \(I(t_i)\)s and sort it according to the number of matching terms in each document).
- **Step 3: Rank.** For each document \(d_j\) from the list computed on Step 2 compute \(sim(d_j, q)\). Sort all documents in the descending order of the similarity.

Inverted Indexes with Postings Files

An inverted index can be adapted to help deal with proximity queries.

Postings. A posting is a triple \((t_i, d_j, k)\), which specifies that term \(t_i\) occurs in document \(d_j\) in position \(k\). Position is usually defined as the word position (order) in the document after stopword removal.

Inverted index with postings file: an inverted index where for each indexed document we specify all locations of the term in it. More formally, an inverted index with postings file is a collection of tuples of the form

\[\langle t_i, \langle d_{i1}, (k_{i11}, \ldots, k_{i1s_1}) \rangle, \ldots, \langle d_{is}, (k_{is1}, \ldots, k_{iss}) \rangle \rangle.\]

Here, \(d_{i1}, \ldots, d_{is}\) are all documents from \(D\) which contain term \(t_i\), and \(k_{it}\) are all the locations in which the terms occur in their respective document.
Example. The inverted index with postings file for the document collection

d_1 When I say stop, continue.
d_2 When I say stop, stop and turn around.
d_3 Around the bend, the river continued.

will be:

when (d_1, 1), (d_2, 1)
I (d_1, 2), (d_2, 2)
say (d_1, 3), (d_2, 3)
stop (d_1, 4), (d_2, 4, 5)
continue (d_1, 5), (d_3, 4)
turn (d_2, 6)
around (d_2, 7), (d_3, 1)
bend (d_3, 2)
river (d_3, 3)

Proximity queries. Inverted indexes with postings files can be used to answer
exact phrase queries and proximity queries.

Let D be a document collection, V be its vocabulary, and I be its inverted index
with postings. Let I(t_i) denote the list of documents that contain t_i and I(t_i, d_j)
denote the list of postings for t_i and d_j. Given a query q that represents the exact
phrase to be match (or a collection of keywords that need to be found in close
proximity), the search will proceed as follows.

• **Step 1: Listings.** For each query term t_i present in q, retrieve I(t_i).

• **Step 2: Merge.** Compute the intersection of all retrieved I(t_i)s.

• **Step 3: Filter.** For each document d_j in the list computed on Step 2, es-
 tablish the proximity of keywords. If the proximity test fails, remove the
document from the list.

• **Step 4: Rank.** For each document d_j from the list computed on Step 3 com-
 pute sim(d_j, q). Sort all documents in the descending order of the similarity.