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Link Analysis in Graphs: PageRank

Link Analysis

Graphs

Recall definitions fronDiscrete math andgraph theory.

Graph. A graph G is a structurgV, E), where

o V ={uvy,...,v,}is afinite set olvertices or nodes;

o F={(v,w)lv,w € V},is aset opairs of vertices callededges.

Undirected and directed graph. In adirected graph, an edgee = (v, w) is
interpreted as aonnection fromv to w but not a connection from w to v.

In anundirected graph, an edge = (v, w) is interpreted as a connectibetween
v andw.

Representations. Graphs can be represented in a number of ways:

e Set notation. A representation of a graph that follows the definition above
Example.G = ({A,B,C,D,E},{(A,B),(A,C),(A,E),(B,C),(B,E),(C,D)}).

e Graphical representation. A graph can be represented as a drawing. Each
nodeis drawn as goint or circle on a plane, and eaddgeis aline con-
necting the representations of its two vertices. To drasected graph,
arrows are added to the edge lines to point from the first vertex irettge
to the second.

Example. Figure 1 shows the graphical representationg-ah the cases
whend is directed and undirected.



Figure 1: Undirected (left) and directed (right) graphs.

e Matrix. A graph can be represented asajacency matrix Mg whose
rows and columns are vertices. If edgs,v;) € E, Mgli, j] = 1, other-
wise, M¢[i, j| = 0. Undirected graphs have symmetrical adjacency matrices
(or, alternatively, only uppre diagonal portions of thosattices are consid-
ered). Matrices for directed graphs need not be symmetric.

Example. The adjacency matrices for graghin undirected and directed

cases:

Undirected G: Directed G-
G|A B C D E G|A B C D E
Al— 1 1 0 1 Al— 1 1 0 1
B |1 — 1 0 1 B|O — 1 0 1
c|ji1 1. — 1 o0 c|o o0 — 1 o
D|j0O 0 1 — O D|l0O 0 O — O
E|1 1 0 0 — E|0O 0O O 0 —

e Lists. A graph can be represented by an associative arragljatency lists
The domain of the arrayl is V. Forv € V, Agv] lists allw € V, such
that (v, w) € E.

Example. The adjacency lists for the undirected and directed vessain
graphG are shown below:

Undirected G: Directed G-
A: | B,.CE A: | B,.CE
B: | A,C,E B: | C,E
C: | ABD C:|D
D |C D

E | AB E

Labeled Graphs. A labeled graph G is a graphG = (V, E), whereE =
{(v,w,1)}, wherev,w € V are vertices connected by the edge arslalabel.
The domain for the set of possible labels is usually speciffgfiront.

Egde labels can be used to specify témgth of a connection, cost to traverse the
edge, type on edge and many other properites.

Graphs can have additionadge andvertex labels.



Properties of Graphs.

Path. A path in a graphG = (V, E) is a sequencg = ej, e, ...e, of edges,
e1 = (wy,w)),...,es = (ws,wl), such thaw| = we, wh = ws, ... w,_; = ws.

In undirected graphs p is called apath between w, and w,,. In directed graphs p

is called apath from w; to wy,.

Connected Graphs. A graphG = (F,G) is calledconnectediff for any pair
v;,vj € V, there exists a path betweernw; andv; (or, fromuv; to v;).

Shortest path. Thelength of a pathp in a graphG is the number of edgesin it.

A shortest pathbetween two vertices andw is a path that starts imand ends in
w with the smallest length (number of edges in it).

Complete graphs. A graphG = (V, E) is completeiff for all verticesv, w € V,
(v,w) € E.

Vertex degrees. LetG = (V, E') be anundirected graph. Thedegree of a node
v € Vin G is defined as
degree(v) = |[{(v,v") € E|v € V}|,

i.e., it is thenumber of edges that connect v to other verticesin the graph.

Let G = (V, E) be adirected graph. Thein-degreeof a nodev € V in G is
defined as
in — degree(v) = [{(v/,v) € EP/ € V}|,

i.e. thenumber of edgesin G that end at v.
Theout-degreeof a nodev € V' in G is defined as

out — degree(v) = |{(v,v") € E[v/ € V},

i.e., it is thenumber of edges that start in v.

Graphs and Social Networks

Social entity. A social entity is acommunity, organization or setting involving a
collection ofinteracting actors.

Actors. In different social entities actors may be:

e Humans. (e.g., employees in a company).

Groups of humans (e.g., sports teams).

Legal or political entities (e.g., companies or states).

Inanimate ojects (e.g., individual computers).

Virtual objects (e.g., web pages or files).



Social Network. A social network of asocial entity is a structure documenting
interactions between actors within the entity.

Typically, social networks are represented as graphsA social network graph
SN = (V, E) is constructed as follows:

e V is the set ofactors of the social entity

e E is the set ofnteractions between the actors in the entity. I.eu, w) € E
iff, actorsv andw have an interaction that is tracked by the social network.

Interactions can beymmetric, in which caseSN is an undirected graph, or
assymetrig in which caseS N is a directed graph.

Examples. Examples of social networks:

e Business interactions. Email exchanges between employees of a company.

Social interactions. "Friendship” relationship ofacebook.

Academic interactions. Citation of a paper by another paper. Co-authoring
of papers by researchers.

Relationship interactions. Kinship relationships between people.

Kevin Bacon game. Actors having roles in the same movie.

Web page interactions. Links from one web page to another.

PageRank via Web Traversal

Web Search specifics. Compared to "traditional” Information Retrievalyeb
search has the following properties:

e Huge document collection. (world wide web is the biggest document col-
lection).

e No "golden set”. Web is unobservable, hence, we cannot find the sets of all
relevant documents for the queries.

e Only few links visited. Only the top 20-40-100 links are of any importance.
Users rarely venture beyond in search of relevant web pages.

e Web pages are linked!Can this be used to improve search?

e Web page owners are not trustworthy. Search engine spamming and
(somewhat less horriblesearch engine optimization attempt to circumvent
the results of web search on certain queries.

Prestige. Idea: agood web search engine must combine discovery of pages that
contain all/most query terms wittobust ranking, which promotes important,
high-quality, reliable pagesto the top.Prestigeis a measure offeb page impor-
tance



PageRank. PageRank is a procedure for computing th@estige of each web
pages in a collection.

There is a number of definitions/derivations for the Pag&Ramputation. To
illustrate how it works, we will use the more simple definitio

Web as a graph. We treat World Wide Web associal network, whereindivid-
ual web pagegurls) are nodes, or actors, ahgpertext links between them are
interactions.

More formally, consider the directed acyclic graphyww = {V, E}. The setV’
of vertices is the list of individual web pages (urls). An edg,w) € FE iff the
web pagev has in its body amnchor tag <a hr ef =" URL" > whereURL is the
URL of the web pagev.

Given aweb pagée V, The setl/ (i) of in-links is the set of all edges € E, such
thate = (v, ) for somev € V.

Given a web page € V, the setO(7) of out-links is the set of all edges € F,
such that = (i, v) for somev € V.

Note: often, only thein-links and out-links from web pages |ocated on a different
siteareincluded in I(i) and O(i).

Surfing the web. PageRankis a way of modeling the behavior of a web surfer in
a single browser window. In particuld?ageRank models the following traversal:

PageRank Traversal:

1. The user starts surfing the web from sonaedomly selected page from V2,

to click on any of the links available on the page (assumimgpige has at least one ol
link).

3. Each link found on the pagecan be selected with the same probability.

4. Wth probability 1 — d the user gets tired of surfing the web by following links anstéad
goes directlyto a randomly selected web page from the collection V.

5. If a web page has no out-links, the user simply goesrandomly selected web page from
the collection V.

2PageRank actually allows to relax this condition and start from somagg randomly selected from a predefin

2. On each step, the user observes some webip&géh probability d € (0,1) (s)he chooses

collection of pages: a (typically small) subset of the entireb page collection.

PageRank defined. ThePageRankof a page € V is theprobability of even-
tually reaching pagei via the traversal procedure outlined above[1].

Deriving PageRank

Let p(:) be theprobability of reaching web page i (i.e., the PageRank of page
i). LetI(i) = {j1,...Js} be the set of all web pages which liné i. Let the



probabilities of reaching each of those pagep@e), . . . , p(js) respectively. Also,
let O(j) be the set oéill outbound edges from jy.

Assumption: All web pages inl” have at least one out-link.

e Suppose we have reached pgge From that page, with probability, we
elect to follow on of the linksj; has|O(j;1)| out-links on it, sowith prob-
ability

1
, follow links
Pl TN

we can reach web pageSincep(follow links) = d, we obtain:

e Similar reasoning for all othei € I(7) yields

1
1O()|

p(iljr) = d-

¢ We can reach pagein one of only two ways:

1. By following a link from one ofjy, ..., js.

2. By randomly selectingwhen the user chooses to jump (i.e. not follow
a link from a current page).

¢ We obtain the following formula for computing the probatyilp(i):

p(i) = (1 - d) - |—;‘ @) - () + - -+ plilf) - p(a)).

Figure 2 illustrates how these probabilities are computedm here, substi-
tuting p(i|jx) we obtain:

Thus,

pageRank(i) = (1 — |V\ +d- Z - pageRank(j). 1)

IOJk

Note, that this is @aecursive definition.

Computing PageRank

From formula (1), we see that in order to compute PageRanlpafa, we need to
know the PageRank of its "ancestors”. A standard way to msgieth computation
is to perform it iteratively.



O(4)

Figure 2: Computing the probability of reaching a web page.

PageRank via iterative process. The traditional iterative algorithm for PageR-
ank uses the following iterative procedure:

1
pageRank’ (i) = 7 foraliev. @
ro: 1 L1
pageRank” (i) = (1 —d) - m +d- Zm
k=1 """Jk

Stop when : <Z(pageRankT(i) - pageRank:T_l(i))> <€ 4)
eV

-pageRank’'(ji).  (3)
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