Density-Based Clustering. Preliminaries

Density-based clustering algorithms is a family of algorithms that determine density-based clusters in the data. A formal definition of a density-based cluster is supplied below.

ε-neighborhood. Let $D = \{d_1, \ldots, d_n\}$ be a set of data points, and let $dist()$ be a distance function for points in D.

Given a number ε, an ε-neighborhood point $d \in D$ is defined as:

$$N_\varepsilon(d) = \{d_i \in D | d_i \neq d, \text{dist}(d, d_i) \leq \varepsilon\}$$

Core points. Given an integer $\text{minpts} > 0$, a point $d \in D$ is a core point in D if

$$|N_\varepsilon(d)| \geq \text{minpts},$$

that is, if the ε-neighborhood of d contains minpts or more points.

Border (boundary) points. A point $d \in D$ is a border (boundary) point if

$$|N_\varepsilon(d)| < \text{minpts},$$

but

$$(\exists d' \in D)(d \in N_\varepsilon(d')).$$

i.e., if the ε-neighborhood of d contains fewer than minpts points, but d itself is in a ε-neighborhood of some other point $d' \in D$.

\footnote{A similar definition will also work for a similarity function.}
Noise points. A point $d \in D$ is a noise point if it is neither core point nor boundary point in D.

Density-reachability. Given the density radius ε and the minimum density minpts, a point $d' \in D$ is directly density-reachable from point $d \in D$ if $d' \in N_\varepsilon(d)$. d' is density-reachable from d if there exists a chain of points $d = d_1, d_2, \ldots, d_k = d'$, such that $d_i \in N_\varepsilon(d_{i-1})$.

Note: Density-connectivity is an asymmetric relationship (a boundary point x may be density-reachable from a core point y, but not the other way around).

Density connectivity. Two points $d \in D$ and $d' \in D$ are density connected, if there exists a core point $f \in D$, such that both d and d' are density-reachable from f.

Density-based cluster. A density cluster $D' \subset D$ is any maximal set of points that are density-connected to each other.

DBSCAN

DBSCAN is a key algorithm for discovery of density-based clusters. DBSCAN takes as input a dataset D, a distance function $\text{dist}()$ that is defined on all pairs of points from D^2 and two parameters:

- ε: the radius of the ε-neighborhood in which DBSCAN will search for data points;
- minpts: the smallest number of points in a ε-neighborhood of a point, for it to be declared a core point.

The pseudocode for DBSCAN is shown in Figure 1.

The algorithm works as follows:

- Core point discovery. First, DBSCAN scans through the entire dataset d and determines based on ε and minpts parameters, the list of core points.
- Cluster construction. Each cluster is constructed as follows. The algorithm pulls a yet-to-be visited core point, and recursively computes all density connected points to it. It then proceeds to search for the next unvisited/unlabeled core point until it runs out of core points to expand.
- Output. At the end, the algorithm returns the breakdown of points into clusters, as well as the lists of core, boundary and noise points.

\footnote{Usually, DBSCAN uses Euclidean distance, but it can also use other distance functions. Also, a version of DBSCAN that uses similarity measures rather than distance measures, can be obtained from the pseudocode shown in these notes in a straightforward way.}
Algorithm DBSCAN($D, \text{dist}(\cdot), \varepsilon, \text{minpts}$)
begin
 Core := \emptyset;
 for each $d_i \in D$ do // find core points
 Compute $N_\varepsilon(d_i)$;
 cluster(d_i) := \emptyset; // initialize cluster assignment for the point
 if $|N_\varepsilon(d_i)| \geq \text{minpts}$ then Core := Core $\cup \{d_i\}$;
 end for

 CurrentCluster := 0; // initialize current cluster label
 for each $d \in$ Core do
 if cluster(d) = \emptyset then
 CurrentCluster := CurrentCluster + 1; // start a new cluster
 cluster(d) := CurrentCluster; // assign first point to the cluster
 DensityConnected($D, d, \text{Core}, \text{CurrentCluster}$); // find all density connected points
 endif
 end for

 ClusterList := \emptyset
 for $k := 1$ to CurrentCluster do // assemble clusters
 Cluster[k] = $\{d \in D | \text{cluster}(d) = k\}$;
 ClusterList := ClusterList \cup Cluster[k];
 end for

 Noise := $\{d \in D | \text{cluster}(d) = \emptyset\}$
 Border := $D - (\text{Noise} \cup \text{Core})$
 return ClusterList, Core, Border, Noise
end

function DensityConnected($D, \text{point}, \text{Core}, \text{clusterId}$)
begin
 for each $d \in N_\varepsilon(\text{point})$ do // add all neighbors to cluster
 cluster(d) := clusterId;
 if $d \in \text{Core}$ then DensityConnected($D, d, \text{Core}, \text{clusterId}$);
 // recursively do it for each core point discovered
 endfor
end

Figure 1: Pseudocode for DBSCAN algorithm