
. .
Fall 2018 CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Lab 4: Clustering

Due date: Friday, November 2, 11:59pm..

Overview

In this assignment you will use unsupervised learning techniques to discover
clusters in a number of simple datasets. You will implement three clus-
ter analysis methods, k-means clustering, agglomerative hierarchical
clustering and DBSCAN.

Assignment Preparation

This is a pair programming assignment. Each student teams up with a part-
ner. For this lab, pick a partner different than your Lab 2 and Lab
3 partner. While this assignment can be easily split into multiple parts, I
strongly recommend that both students take active part in implementing
each of the algorithms.

Note: Open-source versions of clustering algorithms are plentiful. It is
considered cheating to re-use code for clustering algorithms that was written
by someone else. (You may use code from other explicitly acknowledged
sources for other purposes in the program, e.g., for parsing input).

Data

We provide multiple simple datasets for use in this assignment. Each
dataset consists of two files: a CSV (comma-separated values) file containing
the actual data and a text .txt file containing the header of the dataset,
specifying the names of the attributes.

Most of the datasets were adopted from

http://people.sc.fsu.edu/∼burkardt/datasets/hartigan/hartigan.html

1

which contains a list of datasets from [1] and [2]. Some of these datasets
contain real data, some — are synthesized. One more dataset, Iris, is a clas-
sical machine learning dataset. from the University of California, Irvince
Machine Learning repository1 The remaining data files come from the FA-
TAL ACCIDENTS dataset, collected by Peter Oyler2. The dataset contains
information about automobile accidents in California that resulted in fatal-
ities. All CSV files for all datasets have exactly the same format.

CSV file format. The first line of each CSV file is analogous to the
restrictions file in the Lab 3 assignment. It is a binary vector identifying
which columns of the CSV file shall be used for clustering. In some CSV
files, one of the columns is used as a rowId, and should be excluded from
the analysis, while in some other files, all columns contain data. In the Iris
dataset, the last column (labeled as 0 by the restrictions vector) is actually
a class label, which can be used as ground truth to validate the quality of
the clustering.

0 in position i of the first row means that column i should be ignored in the
cluster analysis.

1 in position 1 of the first row means that column i should be used in the
cluster analysis.

The remaining rows of the CSV file contain data points.

Text files. Text files need not be processed by your programs. Text files
contain the original headers for each dataset, split from the CSV data to
simplify parsing. The headers describe the nature of the dataset, contain
references to its origins and specify the names of each column in the dataset.
If you want to use attribute headers in your program (e.g., for generating
output), you may either add a header file name as a parameter to your
program, or deduce the header file name (it will always be header followed
by the name of the data file w/o extension, followed by .txt).

List of Datasets

The following datasets are officially provided to you for this assignment.
Each file listed below, as well as a zip archive of the entire collection is
available at the following URL:

http://www.csc.calpoly.edu/ dekhtyar/466-Fall2018/lab04.html

1http://archive.ics.uci.edu/ml/index.html
2Peter took the first version of CSC 466. The FATAL ACCIDENTS dataset was his data

analytical project.

2

CSV File Header File Dataset Source
4clusters.csv header 4clusters.txt 4 clusters in 2D space (synthetic) Spaeth[2]
mammal milk.csv header mammal milk.txt constituents of mammal milk Hartigan[1]
economy.csv header economy.txt profit vs. equity in sectors of economy Hartigan[1]
planets.csv header planets.txt sightings of minor planets Hartigan[1]
iris.csv header iris.txt measurements of different Iris flowers UCI ML repository
many clusters.csv many clusters headers.txt many clusters in 2D space (synthetic) Spaeth[2]
birth death rate.csv header birth death rate.txt birth and death rates of countries Hartigan[1]
AccidentsSet01.csv header AccidentsSet01.csv fatal automotive accidents P. Oyler
AccidentsSet02.csv header AccidentsSet02.csv fatal automotive accidents P. Oyler
AccidentsSet03.csv header AccidentsSet03.csv fatal automotive accidents P. Oyler

More datasets may be made available by the instructor, as well as can be
manufactured and used by each team, but only the datasets listed above
will be used as part of your lab deliverables.

Lab Assignment

You will investigate the behavior of three common clustering procedures, k-
means clustering agglomerative hierarchical clustering and DBSCAN
on the datasets provided to you. Part of your assignment involves imple-
mentation of the three clustering procedures. In addition to this, you will
study the datasets using your implementations of the clustering algorithms,
and will submit the results you have obtained.

For simplicity, the lab refers to Java or Python programs whenever spe-
cific pieces of code are mentioned. However, each team is free to
implement clustering algorithms in their programming language
of choice (provided that the instructions on how to run their programs are
submitted as part of the lab deliverables).

k-means Clustering

You will implement the k-means clustering algorithm as kmeans.java or
kmeans.py programs3.

Input. The program shall take as input two parameters:

java kmeans <Filename> <k>

or

python kmeans.py <Filename> <k>

<Filename> is the name of the CSV file containing the input dataset.

<k> is the number of clusters the program has to produce.

3Feel free to have as many support .java or .py files as you need.

3

Note: Your program may take additional parameters based on the needs
of your implementation (see below). All additional parameters must be
supplied after the first two and must be properly documented in your README
file.

Internals. There is a variety of versions of the k-means clustering al-
gorithm. Each team is encouraged to (a) select the specific version and,
possibly (b) experiment with different versions 4 to discover the one that
produces better clusters (or works faster).

While the datasets you are working with are small, you should implement
a version of the disk-based k-means clustering algorithm in a sense
that your implementation accesses each data point exactly once per
iteration of the algorithm. You are allowed to store all data in main
memory, since the datasets are very small.

Among the different decisions that each team can make are:

• Choice of initial cluster centroids. Random, SelectCentroids proce-
dure, pre-selected, other variations. . . .

• Choice of centroid recomputation method. Typically, the mean
point of the cluster (hence the ”k-means” in the name of the method),
but you can use medians or modes if so desired.

• Stopping criterion. Minimum point reassignment, minimum cen-
troid change, threshold on sum of squared error (SSE) (for the latter
— you need to find a good threshold).

• Distance measure. While Eucledean distance makes sense for some
of the datasets (the 2D synthetic ones, e.g.), you may choose to try
other distance measures to see if your cluster organization changes/becomes
more pronounced.

• Data normalization/standardization. While this is not part of
the k-means clustering algorithm per se, you may choose to include an
optional data normalization or data standardization procedure to deal
with input data where different attributes have values from drastically
different scales.

• Dealing with outliers. Attempt to detect outliers vs. no outlier
detection.

Output. The output of your program shall consist of two things:

1. Description of the detected clusters.

2. Evaluation of the computed clustering of the data.

4This is where two people can work in parallel on the same program.

4

Since our datasets are small, describe detected clusters by listing all
points belonging to them (this also simplifies grading/comparison). If
data points come with rowIds, you are allowed to output just them. You can
also threshold direct output of all data points in a cluster, and, if your code
runs on larger datasets, output a selection of data points in each cluster, or
use some output approach.

Because except for the Iris dataset we lack well-established (and suppliable
to your program) ground truth on clusters, only internal evaluation
measures for clusters need to be computed and reported. (For the Iris
dataset, you can compute the accuracy/cluster purity measures for each
cluster if there is a clear cluster-to-class mapping.)

For each cluster, compute and report:

1. Number of points in the cluster.

2. Coordinates of its centroid.

3. Maximum, minimum, and the average distance from a point to cluster
centroid.

4. Sum of Squared Errors (SSE) for the points in the cluster.

You may additionally choose to report any other internal measures, e.g.,
inter-cluster distances.

Here is an example of an output for a single cluster (w/o the SSE):

Cluster 0:

Center: 26.25,28.0,

Max Dist. to Center: 10.077822185373186

Min Dist. to Center: 3.010398644698074

Avg Dist. to Center: 6.569312544990502

4 Points:

25.0,38.0,

32.0,27.0,

26.0,25.0,

22.0,22.0,

(Your output does not have to match this, but should report the informa-
tion in an easy-to-read way).

Hierarchical Clustering

You will implement the agglomerative hierarchical clustering method
as an hclustering.java or an hlcustering.py program.

Input. Your program shall take two parameters as input:

java hclustering <Filename> [<threshold>]

5

or

python hclustering <Filename> [<threshold>]

<Filename> is the name of the CSV file containing the input dataset.

<threshold> is the optional threshold at which your program will ”cut” the
cluster hierarchy to report the clusters.

If <threshold> parameter is specified in the input, your program shall
produce both the cluster hierarchy, and the appropriate list of clusters cut
at the specified threshold.

If <threshold> parameter is not specified in the input, your program
shall produce the cluster hierarchy alone.

Note. Your program may include other optional parameters (e.g., selec-
tion of the linkage method) after the first two parameters are entered. If
you are including additional parameters, please document them properly in
the README file.

Internals. Commonly, hierarchical clustering algorithms take as in-
put the distance matrix for the points in the input dataset. You algo-
rithm will work with the same data as the k-means clustering algorithm,
i.e., the actual dataset. Your implementation of the hierarchical clustering
method will be responsible for computing the distances between all points
in the dataset.

I strongly recommend that you separate the computation of the distance
matrix from the actual clustering procedure and make your implementation
of the hierarchical clustering take a distance matrix computed from the input
data as input.

Additionally, as with k-means clustering, in your implementation of the
agglomerative hierarchical clustering algorithm, you can select the spe-
cific details of implementation that you prefer, or experiment with multiple
options.

Among the features you have to select are:

• Distance measure for points. See k-means clustering algo-
rithm discussion.

• Distance measure for clusters. Select between single-link, complete-
link and average-linkmethods (you can also try centroid orWard’s
methods).

Output. Your implementation shall produce as output the following in-
formation:

• The dendrogram of the cluster hierarchy constructed by the al-
gorithm. This hierarchy is independent of the threshold and shall be

6

produced each time the program is run. It is useful to output the
dendrogram into a separate file.

• The actual clusters obtained by applying the input threshold to the
computed cluster hierarchy.

• The evaluation measures specifying the quality of the obtained clus-
ters.

The latter two types of output should be produced only if the threshold
value is specified in the input. If it is not specified, only the tree is produced
and returned.

Dendrogram. Create an XML or a JSON version of the cluster hierarchy
dendrogram and output it. You need to output the dendrogram XML to
stdout, but you may, if you want, also create an XML or JSON file to store
it (in fact, it is recommended that you do so).

XML. The XML representing the dendrogram is simple and straightfor-
ward. The dendrogram is a binary labeled tree. You will use three XML
elements:

• <tree> to indicate the root node of the dendrogram.

• <node> for all inner nodes.

• <leaf> for all leaf nodes containing individual data points. Leaf ele-
ments are EMPTY.

The <tree> and <node> elements will contain an attribute height repre-
senting the height label of the node (the distance between the two clusters
that are merged).

The <leaf> elements will contain an attribute data whose contents shall
be the data point from the dataset represented by the leaf node (or its
rowId). For the sake of completeness, feel free to add a height attribute
with the value of 0 to the <leaf> elements.

The <tree> and all <node> elements shall have exactly two children: either
<node> or <leaf> elements.

Here is an example of a small XML output and the dendrogram it repre-
sents.

<tree height = "5.0" >

<node height = "2.0">

<leaf height= "0" data ="1, 0"/>

<leaf height= "0" data ="3, 0"/>

</node>

<leaf height = "0" data = "6,0"/>

</tree>

(1,0) (3,0)

2.0

(6,0)

5.0

7

JSON. The JSON version of the dendrogram represents the same infor-
mation as the XML version. Use for following JSON format.

• The root node, and any internal node JSON object shall contian three
attributes:

type "root" for root node, "node" for internal nodes
height the height of the node in the tree
nodes a JSON array consisting of two JSON objects representing the subtrees

• A JSON object for a leaf node shall contain the following three at-
tributes:

type "leaf"

height the height of the node in the tree (typically value is 0.0)
data data point represented by the leaf

Here is the same tree in JSON format.

{type: "root"

height: 5.0,

nodes: [{type: "node",

height: 2.0,

nodes: [{ type:"leaf"

height:0,

data: "1,0"},

{ type: "leaf":

height: 0,

data :"3,0"

}]

},

{type: "leaf",

height: 0,

data: "6,0"

}

]

}

Note: You may use a JSON array for storing the value of the data

attribute in the leaf node:

{type: "leaf",

height: 0,

data: [6,0] }

Clusters and measures. Whenever a threshold is specified, your program
shall, in addition to producing the full dendrogram, also report the clusters
that are formed when the dendrogram is cut at the specified threshold. The
clusters and their parameters shall be reported in the same way as your
k-means clustering algorithm implementation does it.

8

DBSCAN

You will implement the agglomerative hierarchical clustering method
as a dbscan.java or dbscan.py program.

Input. Your program shall take three parameters as input:

java dbscan <Filename> <epsilon> <NumPoints>

or

python hclustering <Filename> <epsilon> <NumPoints>

<Filename> is the name of the CSV file containing the input dataset.

<epsilon> is the Epsilon (ε) parameter of the DBSCAN algorithm: the
radius within which DBSCAN shall search for points.

<NumPoint> is the minimal number of points within the <epsilon> distance
from a given point to continue building the cluster.

Internals. Efficient implementation of DBSCAN requires knowledge of
spatial data structures (such as R-trees, or k-d trees) to store allow the al-
gorithm to prune computations of distances between the points. Given the
sizes of the input datasets, it is ok for you to implement DBSCAN näıvely
as follows:

• compute the matrix of pairwise distances between the points

• for each point, construct a list of points within the <epsilon>-vicinity

• using the data structure you constructed on the previous step, perform
DBSCAN search until you run out of points.

With proper data structures used, this algorithm will be rather efficient
for small datasets.

Output. The output of your dbscan.java or dbscan.py program shall
look similar to the output of your kmeans program, with one additional
caveat.

DBSCAN allows for easy outlier detection (outliers are all data points that
do not get placed into clusters). Because of this, in addition to reporting the
information about each cluster, as you would in the output of your kmeans
program, your DBSCAN output, shall also include information about the
outliers detected. On small inputs, you can list all outliers, and provide some
basic statistics (total number of outliers, percentage of the dataset outliers
constitute). For large inputs, you may trim the output of the outliers, but
shall still provide the basic statistics.

9

Study of the datasets

You will use your implementations of the k-means clustering, agglomer-
ative hierarchical clustering and DBSCANmethods to study the datasets
provided to you and to find the best (in your opinion) clusters in the data.

The results of your study will be compiled in the report that each team
will prepare and submit.

Use all methods. For each dataset provided to you, you need to use all
three methods (programs) to discover the best clusters. Your report will
indicate the best results you achieved using each of the three programs.

Best clustering. Each implementation comes with some predefined pa-
rameters (k, number of clusters, for k-means clustering; threshold for hier-
archical clustering, ε and NumPoints for DBSCAN), which will affect the
output of the respective program. In addition, each team may choose to
implement multiple choices for various parts of each algorithm (e.g., you
may implement all three linking techniques for the hierarchical clustering,
or a number of different ways to select the initial centroids for the k-means
clustering).

You will run your programs on each dataset with different settings of the
input parameters (and any choices that you have implemented) to determine
which runs produce the best clustering result. A systematic approach to
doing so is called tuning hyperparameters. In case of clustering, such tuning
may have to be performed manually – as it will fall on you to determine which
cluster evaluation metrics computed by your programs constitute a better
clustering of your data (in case of hypertuning parameters for classification
you often can do it automatically).

Additionally, you may choose to determine the ground truth for some
(or all) of the datasets and compare the outputs to the results you obtain.
Ground truth for the Iris dataset is given in the dataset itself. For some other
datasets it can be determined by investigating/visualizing the dataset using
any tools available to you. 2D and some 3D datasets, for example, can be
plotted as scatterplots using Excel or matplotlib, and visual observation may
help you determine the clusters that should be detected by your program.
(For some datasets, like the economy dataset, which has 10 variables, simple
visualization may be infeasible).

Report. Each team will prepare a report of discoveries. The report will
consist of the following information:

1. Study Design. Provide brief description of your implementations of
the two clustering methods. Specify which features (such as distance
measures, centroid chocies, etc.) you have implemented and used in
the study.

10

2. Results. For each dataset, and for each algorithm provide the descrip-
tion of the best result achieved. Specify the input parameters (and
features) of the program that lead to the best result, and provide a
snapshot of the obtained output (feel free to paste the output verba-
tim, or to use a more succinct representation of the clusters).

3. Visualization. Where possible (some of your datasets have only 2-3
dimensions), provide a visualization of the clustered data.

4. Discussion. May be embedded into reporting of results. Mention any
interesting observations about specific datasets/methods that you have
made during the study.

5. Analysis. Present an overall conclusion of your results. Which method(s)
performed better? Did some method worked better on some specific
type of data and another – on different data? When did each of the
algorithms perform well? What features (if any) of each algorithm
lead to better performance in what cases?

Deliverables and submission instructions

This lab has both electronic and harcopy deliverables.

Electronic deliverables.

• kmeans.java/kmeans.py and all supporting files.

• hclustering.java/hclustering.py and all supporting files.

• dbscan.java/dbscan.py and all supporting files.

• README file specifying what has been implemented, and providing any
instructions for compiling and running the code. (must contain the
names of all students on the team).

• The report. The electronic version of the report should be submitted
in PDF format.

Please place all your deliverables EXCEPT the PDF version of the report
and the README file into a sinlge zip file lab04.zip. Please submit your
PDF report the README file separately.

Use the following command

$ handin dekhtyar lab04 <Files>

11

References

[1] John Hartigan, Clustering Algorithms, Wiley, 1975. ISBN 0-471-35645-
X.

[2] Helmut Spaeth, Cluster Dissection and Analysis, Theory, FORTRAN
Programs, Examples, Ellis Horwood, 1985.

12

