
. .

Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:

Classification/Supervised Learning
Potpourri

Contents

1. C4.5. and continuous attributes: incorporating continuous attributes into C4.5 Algorithm.

2. C4.5. and overfit: dealing with overfit in decision trees

3. kNN: k Nearest Neighbors learning: a lazy evaluation learning algorithm.

4. Bagging and Boosting: ensembles of classifiers to the rescue!

5. Random Forests: taking ensemble classifiers to the next level

1 Handling of Continuous Attributes in C4.5. Algorithm

Notation. Let D be a dataset over the list of attributes A = {A1, . . . , An}. Let

Ai ∈ A be a continuous attribute.

A binary split of D on attribute Ai at value α is a pair D− ⊆ D, D+ ⊆ D, such

that:

1. D− ∪D+ = D

2. D− ∩D+ = ∅

3. (∀d ∈ D−)d[Ai] ≤ α;

4. (∀d ∈ D+)d[Ai] > α;

Idea. On each step of C4.5 Algorithm, for each continuous attribute Ai find a

binary split with the best information gain (or information gain ratio). More

specifically, the enthropy of a binary split of D on Ai using α is

enthropyAi,α(D) =
|D−|

|D|
· enthropy(D−) +

|D+|

|D|
· enthropy(D+).

1

function selectSplittingAttribute(A,D,threshold); //uses information gain

begin

p0 := enthropy(D);
for each Ai ∈ A do

if Ai is continuous then

x := findBestSplit(Ai, D);

p[Ai] := enthropyAi,x(D);
else

p[Ai] := enthropyAi
(D);

endif

Gain[Ai] = p0− p[Ai]; //compute info gain

endfor

best := arg(findMax(Gain[]));
if Gain[best] >threshold then return best

else return NULL;

end

function findBestSplit(Ai, D) //finds best binary split for a continuous attribute

begin

initialize associative arrays counts1[], . . . , countsk[];
initialize associative array Gain;

p0 := enthropy(D);
foreach d ∈ D do //Step 1: scan data

for j = 1 to k do

if class(d) == cj then

countsj [d[Ai]] := countsj [d[Ai]] + 1;
else

countsj [d[Ai]] := countsj [d[Ai]] + 0; // instantiates counts j[d[A i]]

endif

endfor

endfor

foreach x: index of instance of countsi do

//computes enthropy of binary split at x

Gain[x] := p0− enthropy(D,Ai, x, countsi, . . . , countsk);
endfor

best := arg(findMax(Gain[]));
return best;

end

Figure 1: A modified version of selectSplittingAttribute() function for the C4.5

Algorithm. This version finds the best binary split for any continuous attribute.

2

The information gain obtained by using Ai with the binary split at α is:

GainAi,α(D) = enthropy(D)− enthropyAi,α(D).

Finding best binary split. The new version of the selectSplittingAttribute()

function is in Figure 1.

• When attribute Ai is continuous, new selectSplittingAttribute() calls find-

BestSplit() function, also shown in Figure 1.

• To find the best binary split, we

– scan the dataset D and determine the list of all values of Ai.

Note, that while dom(Ai) is continuous, D contains finitly many dis-

tinct values of Ai!

– For each value x in of Ai from D find enthropyAi,x(D).

– Find x with the largest information gain and return it.

Other adjustments to C4.5. One more adjustment to C4.5 needs to be made.

• if a categorical attribute is selected to split D on the current step of the

algorithm, this attribute is removed from the attribute list passed in the

recursive calls to C4.5. (same as before)

• if a continuous attribute is selected to split D on the current step of the

algorithm, this attribute is kept in the attribute list passed in the recursive

calls to C4.5. (new)

C4.5. and Overfitting

Overfitting. Let Dtraining be a training set for a classification problem, and Dtest

be a test set. Let f be a classifier trained on Dtraining .

f overfits the data, if there exists another classifier f ′ which has

lower accuracy than f on Dtraining but higher accuracy than f on

Dtest.

Casuses of overfitting:

• Noise in data. (e.g., wrong class labels)

• Randomness phenomena. (training set is not representative of the application

domain)

• Complexity of model. (too many attributes, some may not be needed for

classification)

3

Dealing with overfitting. Two main approaches:

• Pre-pruning or stopping early. E.g., the third termination condition in

Algorithm C4.5 terminates tree construction early using the user-specified

threshold parameter.

• Post-pruning or pruning a constructed tree. In this approach, the clas-

sification algorithm is allowed to possibly overfit the data, but a separate

pruning algorithm will then check the classifier for overfitting.

k-Nearest Neighbors Classification (kNN)

C4.5. and many other classification techniques (Neural Nets, SVNs, Rule Induc-

tion) are eager: these techniques analyze the training set and construct a classifier

before any test data is read.

The principle of lazy evaluation is to postpone any data analysis until an actual

question has been asked.

In case of supervised learning, lazy evaluation means not building a classifier in

advance of reading data from the test data set.

k-Nearest Neighbors Classification algorithm (kNN). kNN is a simple, but

surprisingly robust lazy evaluation algorithm. The idea behind kNN is as follows:

• The input of the algorithm is a training set Dtraining , an instance d that needs

to be classified and an integer k > 1.

• The algorithm computes the distance between d and every item d′ ∈ D.

• The algorithm selects k most similar or closest to d records from D: d1, . . . , dk ,

di ∈ D.

• The algorithm assigns to d the class of the plurality of items from the list

d1, . . . , dk.

Distance/similarity measures. The distance (or similarity) between two records

can be measured in a number of different ways.

Note: Similarity measures increase as the similarity between two objects in-

creases. Distance measures decrease as the similarity between two objects in-

creases.

1. Eucledian distance. If D has continuous attributes, each d ∈ D is essen-

tially a point in N -dimensional space (or an N -dimensional vector). Eucle-

dian distance:

d(d1, d2) =

√

√

√

√

n
∑

i=1

(d1[Ai]− d2[Ai])2,

works well in this case.

4

2. Manhattan distance. If D has ordinal, but not necessarily continuous at-

tributes, Manhattan distance may work a bit better:

d(d1, d2) =
n
∑

i

|d1[Ai]− d2[Ai]|.

3. Cosine similarity. Cosine distance between two vectors is the cosince of the

angle between them. Cosine similarity ignores the amplitude of the vectors,

and measures only the difference in their direction:

sim(d1, d2) = cos(d1, d2) =
d1 · d2

||d1|| · ||d2||
=

∑n
i=1 d1[Ai] · d2[Ai]

√

∑n
i=1 d1[Ai]2 ·

√

∑n
i=1 d2[Ai]2

.

If d1 and d2 are colinear (have the same direction), sim(d1, d2) = 1. If d1
and d2 are orthogonal, sim(d1, d2) = 0.

Ensemble Learning

Bagging

Bagging = Bootstrap aggregating.

Bootstrapping is a statistical technique that one to gather many alternative ver-

sions of the single statistic that would ordinarily be calculated from one sample.

Typical bootstrapping scenario. (case resampling) Given a sample D of size

n, a bootstrap sample of D is a sample of n data items drawn randomly with

replacement from D.

Note: On average, about 63.2% of items from D will be found in a bootstrapping

sample, but some items will be found multiple times.

Bootstrap Aggregating for Supervised Learning. Let D be a training set, |D| =
N . We construct a bagging classifier for D as follows:

Training Stage: Given D, k and a learning algorithm BaseLearner:

1. Create k bootstrapping replications D1, . . . ,Dk of D by using case

resampling bootstrapping technique.

2. For each bootstrapping replication Di, create a classifier fi using the

BaseLearner classification method.

Testing Stage: Given f1, . . . , fk and a test record d:

1. Compute f1(d), . . . fk(d).

2. Assign as class(d), the majority (plurality) class among f1(d), . . . , fk(d).

Boosting

Boosting. Boosting is a collection of techniques that generate an ensemble of

classifiers in a way that each new classifier tries to correct classification errors

from the previous stage.

5

Algorithm AdaBoost(D, BaseLearner, k) begin

foreach di ∈ D do D1(i) =
1

|D|
;

for t = 1 to k do //main loop

ft :=BaseLearner(Dt);

et :=
∑

class(di) 6=ft(di)
Dt(i);

// f t is constructed to minimize e t

if et > 0.5 then // large error: redo

k := k − 1;
break;

endif

at :=
1
2
ln 1−et

et
; //reweighting parameter

foreach di ∈ D do Dt+1(i) := Dt(i) · e
−αt·class(di)·ft(di); //reweigh each tuple in D

Normt :=
∑|D|

i=1
Dt+1(i);

foreach di ∈ D do Dt+1(i) :=
Dt+1(i)

Normt
; //normalize new weights

endfor

ff inal(.) := sign(
∑k

t=1
at · ft(.))

end

Figure 2: AdaBoost: an adaptive boosting algorithm. This version is for binary

category variable Y = {−1,+1}.

Idea. Boosting is applied to a specific classification algorithm called BaseLearner1.

Each item d ∈ D is assigned a weight. On first step, w(d) = 1

|D| . On each step,

a classifier fi is built. Any errors of classification, i.e, items d ∈ D, such that

f(d) 6= class(d) are given higher weight.

On the next step, the classication algorithm is made to ”pay more attention” to

items in D with higher weight.

The final classifier is constructed by weighting the votes of f1, . . . fk by their

weighted classification error rate.

AdaBoost. The Adaptive Boosting algorithm [2] (AdaBoost) is shown in Fig-

ure 2.

Weak Classifiers. Some classifiers are designed to incorporate the weights of

training set elements into consideration. But most, like C4.5, do not do so. In

order to turn a classifier like C4.5 into a weak classifier suitable for AdaBoost,

this classifier can be updated as follows:

• On step t, given the weighted training set Dt, we sample Dt to build a train-

ing set D′
t. The sampling process uses Dt(i) as the probability of selection

of di into D′
t on each step.

Voting

When multiple classification algorithms A1, . . .Ak are available, direct voting can

be used to combine these classifiers.

1It is also commonly called weak classifier.

6

Let D be a training set, and f1, . . . fk are the classifiers produced by A1, . . . ,Ak

respectively on D. Then the combined classifier f is constructed to return the class

label returned by the plurality of classifiers f1, . . . fk.

Random Forests

Random Forests[1] are an extension of bagging. A bagging technique resamples

the training set with replacement, but keeps all attributes in the dataset ”active” for

each resampled training set.

Random Forests build a collection of decision trees, where each decision tree

is built based on a subset of a training set and a subset of attributes.

In a nutshell, a Random Forests classifier works as follows:

1. Input: Let D = {d1, . . . , dn} be the training set, with class(di) defined.

Let C = {c1, . . . , ck} be the class attribute, and let A = {A1, . . . AN} be

the set of attributes for vectors from D, i.e., given d ∈ D, d = (x1, . . . , xM).

2. Attribute selection parameter: A number m << M is fixed throughout

the run of a random forest classifier. This number indicates how many at-

tributes is selected to build each decision tree in a forest.

3. Forest construction: The classifier builds N decision trees T1, . . . TN . Each

decision tree is built by selecting a subsample of the training set, and a subset

of the attributes.

4. Single decision tree construction: Decision tree Tj is built as follows.

(a) Build a set Dj ⊆ D drawing random k data points from D with re-

placement.

(b) Select m random attributes A
j
1, . . . , A

j
m from A without replacement.

(c) Using a decision tree induction procedure (see below), build a decision

tree Tj for the training set Dj restricted to attributes AJ
1 , . . . , A

j
m.

Do not prune the decision trees.

5. Classification process: For each data point d ∈ D, (attempt to) classify d by

traversing trees T1, . . . , TN to discover classification decisions c1, . . . , cN .

Choose, as class(d), the most frequently occurring in c1, . . . , cN class.

Caveats. A decision tree Tj may not contain all possible values (paths) for some

attribute. This means that some trees won’t be able to classify some of the data

points in D. The simplest way to deal with this is to ignore.

Decision tree induction procedures. Both versions of ID3 (C4.5 without the

pruning) and CART, a decision-tree induction algorithm that uses the Gini impu-

rity instead of Information Gain-based measures, can be used.

7

Gini impurity measure. The Gini impurity measure quantifies how often a

randomly chosen and randomly labelled data point from a training set will be mis-

labelled.

Let D = {d1, . . . , dn} be a training set.

Let C = {c1, . . . , ck} be a class variable.

Let Di = {d ∈ D|class(d) = ci} be the set of all training set points from

category ci.

Let fi = |Di|.

The Gini impurity measure IG is defined as follows:

IG(D) =
k
∑

i=1

fi · (1− fi) =
∑

i=1

kfi −
∑

i=1

kf2
i = 1−

∑

i=1

kf2
i =

∑

i 6=j

fi · fj.

References

[1] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

[2] Y. Freund, R.E. Shapire. Experiments with a New Boosting Algorithm.

In Proceedings, 13th International Conference on Machine Learning

(ICML’96), pp. 148–156, 1996.

8

