bSC 466 Knowledge Discovery from Data  Alexander Dekhtyar.

Data Mining:
Clustering/Unsupervised Learning
k-Means Clustering

Definitions

Clustering. Clustering is the process of organizing data instances into groups
whose members are similar in some way.

Cluster. A cluster is a collection of data instances deemed taingilar to each
other anddissimilarto other data instances.

Data instance a.k.@bject a.k.a.data point.

Dataset. The dataset in &lustering task is a collectionD = {xzi,...,z,} of
data points over the set of attributds= {4, ..., Ay }.

Note: The key difference betweetlustering and classification tasks is that in
classificationtasks, the dataset includeslass variable

In clustering tasks, class variable is not available. The taskas to predict
the class of each data point, butdoganize data points into groups by their
perceived similarity.

Classificationis also known asupervised learning
Clustering is known asunsupervised learning

Example. Consider the four pictures in Figure 1.

e Scatterplot (a) shows an example of three easy-to-digshgtiusters with
clear boundaries and clear membership.

e Scatterplot (b) shows an example of two clusters that aadively easy to
identify. However, the boundary and the exact membershipearciusters is
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Figure 1: Clusters in data.

subject to discussion and not all algorithms may be able teraene cor-
rectly the desired cluster for each poiint.

e Scatterplot (c) shows an example of two clusters, where neeship (in one
of the two clusters) is determined by more than just proxim&lustering
algorithms based solely on assigning points to clustersan their prox-
imity to each other (or to some other locations) may be unakldentify the
"ring” cluster properly.

e Scatterplot (d) shows an examples of two clusters with adgai between
them, which makes it hard for both the algorithms and the mstaidentify
membership of certain data points. Additionally, the déegrcontains three
outliers data points that lie well outside any cluster. Clusterifgpeathms
that do not properly detect outliers may be unable to deteaptgy cluster
boundaries because of it.

Clustering Algorithms

Partitional Algorithms: Clustering algorithms that simply separate the dataset
into distinct clusters.

Hierarchical Algorithms: Clustering algorithms that create structured (hierarchi-
cal) collections of clusters.

Density-Based Algorithms: Clustering algorithms that expand clsuters based on
the density of points in specific "neighborhoods”.



Partition Algorithms: k-Means Clustering Algorithm Family

Historical Note. The k-Means Clustering algorithm has been discovered and
rediscovered by researchers in different fields many tit@ppeared in the works
of Lloyd (1957) [1], Forgey (1965¥], Friedman and Rubin (1967) and McQueen
(1967).

Applicability. DatasetD = {x1,...,z,}, z; = (1, .. ziy) € R™.

In order to be able to use-means clustering algorithmthe notion of themean
must exist for the domain of each attribute.

Algorithm Outline.  The algorithm takes as input the dataget= {z,...z,}
and an integek — the number of clusters to build.

The algorithm proceeds as follows.

1. Select initial cluster centroids.

2. On each step, for each data point compute its distances dach of the
cluster centroids and assign it to ttlesest centroid

3. Recompute cluster centroids.

4. Steps 2 and 3 are repeated until the process converges.

Details: cluster centroids. Initial centroid selection:

e Pick k random data points from the datasetegd}.
e Use the following selection procedugelectCentroids:

1. Compute theentroid ¢ of the entire datasdD.

2. Firstcentroidm; isthex € D, suchthati(m;, ¢) = maxzep(d(z,c))
(the point furtherest away from the centroid).

3. Pickmg such thatl(m, ms) = maxgep(d(my, x)).
4. Pickm;, such thag;l;ll (d(mj,m;)) = maxzep Zj;ll(d(mj, x)).

e Selectasampl§ C D, |S| > k. Perform the procedure described above on
S. (This helps fighbutliers).

e Pre-select the seeds before starting the algorithm (ameex@ample, locate
them as the first data points inD).

Centroid recomputation:

o Letmy1,...myy are thek centroids on step > 1. LetCyq,...,Cyy, be
the k clusters assigned on stepThe new centroid®i; 41,1, ..., M1 % are
computed asneansof points in their clusters on previous iteration:



Algorithm diskKMeans (D, k);
begin
m/[] := SelectlnitialCentroids(D,k);
repeat
for j:=1tok do
slj] :=(0,0,0,...,0); // s[] - famly of vectors of size din(D)
numl[j]:=0; [/ nunf{] - nunber of points in each cluster
clj]:=0; /1 cl[] - actual clusters
endfor
foreachz € D do
cluster := argmin;_, ,(dist(z,m;)); // assign x to the cluster
cllcluster] := cl[cluster| U {x};
slj] == slj] + =
numl[j] := num[j] + 1;
endfor ‘
for j :=1to k dom[j] := %ﬂﬂm
until isStoppingCondition(m/[],cl[]) = true;
output l[];
end

Figure 2: Disk version of thé-Means clustering algorithm.

Stopping criteria.  Thek-means algorithm can use any of the following stopping
(convergence) criteria:

1. no (or minimum) reassignment of points between clusters;
2. no (or minimum) change in cluster centroids;

3. insignificant decrease in tlsam of squared error.

SSE = Xk: Z d(z,my ;).

7j=1 IECt_’j

Disk Version of the k-means clustering algorithm. Figure 2 has the pseudocode
for a version of thek-means clustering algorithm that works with data stored in
secondary storage (on disk).

Features of the disk-based version:

e One data scan per iteration.

e Small memory footprintThis is atuple-at-a-timealgorithm. Only one disk
block is necessary for the scan.

e Cluster assignmenis not used in the code, except for checking stopping
conditions and the final return. If necessary, it can be raaiet in the
dataset itself. This will add an extdisk 1/0 operation per disk block per
iteration.

¢ Alternatively, if the stopping condition can be checked without obsenang
full set of points in each cluster (e.g., stoppage condisdrased on changes
in centroids or sum of squared error), we can modify the élyoras follows
to minimize the I/Os:



— eliminatec![] from the algorithm. Assignment of the data point to clus-
ter is computed, butot recorded beyond the updates toum[] and

s].
— After the stoppage condition is satisfied, rerun the clisgeprocess

(the body of theepeat loop) one more time, but this time, us#] to
record and output clusters.

This revision will require an extra scan of the data at the @ather than
doubling the I/O cost).

Strengths and Weaknesses of the-Means Clustering Algorithm

Strengths. The key strengths are:

e Simplicity.
o Efficiency

Time Complexity: O(tkn) (n = |D|, k — number of clusterg,— number of
iterations)

Data Complexity: ¢- B(D) (B(D) — number of disk blocks in holding).

Weaknesses and addressing them.

¢ Applicability. Mean of a set of data points must be computable.

Note: A variation of k-means clustering algorithm called k-modes clus-
tering can be used witlsategorical data

e Need for k. The user must "guess” propét If & is not the number of
true clusters in the dataset, thaneans clustering algorithmmay perform
poorly.

Example. Figure 3.(a). The dataset has two clusters (circlesk-riieans
clustering is run fork = 3, one of the reported clusters may (will) combine
points from two "real” clusters.

Note: Runk-means clusteringmultiple times with increasing values &f
Typically, the number of clusters is small enough to maleféasible

e Sensitivity to initial centroid choice. Poorly selected centroids may yield
bad results even when clusters are clearly defined.

Example. Figure 3.(b). If centroids are selected randomly, two daiatp
from the same cluster may be selected (solid boxes). Dashex$lshow the
clusters computed by themeans clustering algorithmwith this selection
of initial centroids. Figure 3.(d) shows the results of tameans clustering
algorithm when initial centroids are picked from different real clrst

Dealing with initial centroid choice sensitivity.

— Random selectionworks well when|D| is large.

— Use proceduré&electCentroids described above. It attempts to place
initial centersas far away from each other as possible
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Figure 3: Weaknesses hfmeans clustering illustrated.

— Manually select seeds prior to runnikgmeans clustering
e Sensitivity to outliers.

Anoutlier is a data points located very far away from other data
points (i.e., isolated).

The k-means clustering algorithm does not detect outliers. Outliers are
assigned to clusters on each step, and may affect undueniodwon the lo-
cation of the cluster’s centroid. This may yield incorrelcister boundaries.

Example. Figure 3.(c). The data set consists of two clusters and desing
outlier. If the outlier is detected, two clusters can be prbpseparated.
Otherwise, the outlier gets assigned to one of the clustpuiis” the clus-
ter centroid away from the true position, and allows the sdoduster to
"annex” some of the points of the first cluster.

Dealing with outlier sensitivity.

— Outlier detection during k-means clustering. Discover points that
are too far away from the centroid of their cluster and remibese
points from consideration. Use a specifiteshold to determine if a
point istoo far away from the cluster centroid

— Random sampling Randomly sample the data, and cluster the sam-
ple. The probability of selecting an outlier into a sample/esy small.



e Cannot properly detect clusters with close centerslf two clusters have
centers near each other, theneans clustering algorithmwill note be able
to properly detect them.

Example. Figure 1.(c).The two clusters: the outer ring and the inrenél
have centers that are located close to each other. Therafstead of recog-
nizing theinside/outsideclusters k-means clusteringwill yield a left/right
or top/bottomor similar split (based on the initial centroid assingmgnts

Essentially, thé&-means clustering algorithmreplaces the problem of sep-
arating points in different clusters with the problem of aegting cluster
centroids Thus, in this example it will move towards increasing treatice
between cluster centers.

Dealing with complex cluster shapes/co-centered clusters

— Sometimes, it is not a problerfdue to application/dataset specifics)

— Outside of the latter observatiotiere is really no way to compensate
for this.

Representation of Clusters
Cluster = data points. Represent each cluster as the collection of points in it.

e Goodfor applications interested in properties of individuatadpoints.

e Badfor applications interested simple intuitive descriptions of discovered
clusters.

Cluster = centroid + radius. Each cluster is represented by a centroid and a
radius.

e Good, becausasuccinct (and simple).

¢ Information is available from th&-means clustering algorithm No new
computations are needed.

e Bad, because&rude.

e May yield cluster overlaps

Cluster = Class. Each data point is assigned a class label derived from tise clu
ter it has been assigned. The new datd¥etonstructed this way is used to train a
classifier that has explanatory power (e.gdeaision treeor a set ofclass associa-
tion ruleg.

The cluster is represented as the subset of classifier/satesf identifying it in the
classifier model.

e Good, because o&xplanatory power. (We may be able to articulate what
the cluster really represents.)



e Bad, becausdime- andresource-consuming. Requires significant extra ef-
fort (see:Learning, Supervised.).

e May fail to producemeaningfulexplanation.

Cluster = frequent values. Represent each cluster via a small subsetref
qguently occuringpr typical data points

e Good, because follows thtstuff like this” intuition.

e May take some extra work to identifyood representatives

e May allow for comparison of new data points.

e But may also miss important information about the structfréhe cluster
(e.g., Figure 1.(c)).
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