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Link Analysis in Graphs: PageRank The Math Behind
PageRank

Matrices

A matrix A = [a;;] is calledpositive iff for all ¢ andyj, a;; > 0.

Nonnegative matrices. A matrix A = [a;;] is callednon-negative iff for all
andj, aij > 0.

Eigenvalues and eigenvectors. Let A be a matrix;z be a vector and be a scalar
(number). If
Az = Az,

then\ is called areigenvalueandz is called areigenvectorof A.

The seto(A) of eigenvaluesof A is called aspectrum of A. The spectral
radius of A, p(A) is
A) = Al).
p(A) = ma (1)
The circle with the radiug(A) centered at the origin is called tispectral circle
of A.

The eigenvectorsof A are all the roots of theharacteristic polynomial p()\)
of A:
p(A) = det(A — M),

wherel is the unit matrix (diagonal matrix with 1 on the diagonal &elerywhere
else).

The algebraic multiplicity of an eigenvalue \, denotedalgmult()) is the
number of times it is repeated as the rootpdh). ) is asimple eigenvalueif
algmult(\) = 1.



Perron’s Theorem for Positive Matrices. Let A = [a;;] be apositive matrix.
Letr = p(A) be itsspectral radius The following statements hold:

. 7> 0. ris called thePerron root
. 7 € o(A). r is aneigenvalueof r.
. algmult 4(r) = 1. The Perron rootr() is simple.

. There exists a positive vectdrsuch thatdz = rz.
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. A vectorp such thatdp = rp, p > 0, ||p||1 = X |pi| = 1, isunique. (it is
called thePerron vectoy.

6. r is the only value on the spectral circle 4f

Irreducible matrices. A square matrix\/ is said to bérreducible iff the graph
G itinduces isstrongly connected i.e.,if there is a path from every node in the
graph to every other node in the graph

(alternatively, a square matrik/ is reducible if there exists such a symmetric
permutation of rows and columm3 that transformsl/ into a matrix of the form

XY
T _
PMP_<O Z),

whereX andZ are squareM is irreducibleiff such a transformation is impossi-
ble.)

(A permutation matrixP is any square matrix that has exactly dnie each row
and in each column of the matrix; all other elements of theimate 0s).

Question: Why are the two definitions above equivalent?

Perron-Frobenius Theorem for irreducible matrices. Let A be anon-negative
irreducible matrix The following statements are true:

r = p(A) > 0. The spectral radius of is non-zero.
. r € g(A). ris the Perron root.

. algmult4(r) = 1. r is simple.
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. There existg: > 0, such thatdz = rz. (& is an eigenvector ofi for the
Perron root).

5. The Perron vector o, defined ag > 0, ||p||1 = 1, Ap = rp is unique

There are no non-negative eigenvectorsAoexcept for positive multiples
of p, regardless of eigenvalue

6. r need not be the only eigenvalue on the spectral circlé.of



Primitive matrices. A matrix A is primitive iff A has only one eigenvalue=
p(A) on its spectral circle.

That is, inprimitive matrices, the "largest” eigenvalue is unique.

A nonnegative irreduciblenatrix that hash > 1 eigenvalues on its spectral
circle! is said to bémprimitive and# is called itsindex of imprimitivity

Markov Chains

Stochastic Process. A set of random variable$X;}, t = 1...00, such that
dom(Xy) = {51,...,5,} for all ¢ is called adiscrete finite-state stochastic pro-
cess

Elements of the se$ = {5;,...S,} are calledstatesand setS is called the
state space

Markov Chains. A Markov chain is astochastic processhat satisfies the fol-
lowing property (calledViarkov property:

PT(XtJrl = SZ|Xt = Sit A...NSy= Szo) = PT(XtJrl = Sz‘Xt = Sit~

TheMarkov propertyreads:

The value of the random variable X at each time is conditionally
dependent only on the value of X at the previous moment of
time.

Transition probabilities. The probability

p(t)ij = Pr(Xes1 = Si| X¢ = 5j)
is calledtransitional probability from stateS; to states;.

Stationary Markov Chains. A Markov Chain{X,} is stationary if its transi-
tional probabilities do not vary over time, i.e., if for each’ > 0, and for each
pairi, j

p(t)ij = p(t')ij = pij.

Transition probability matrix. ~ Transition probabilitieg;; of a stationary Markov
chain form am x n matrix of transitional probabilities:

P11 P12 --- DPin

P21 P22 ... DPon
P = [pij] = . . . .

Pnl1 Pn2 --- DPnn

1Some eigenvalues my be complex numbers.



Irreducible Markov Chain. A Markov chainis irreducible iff each stateS; of
the state space is reachable from each statg;.

In the terms of linear algebra, a Markov chainingducible iff its transition
probability matrix isirreducible .

Periodic Markov Chain. A stateS; in a Markov chain{X;} is periodic with
the periodk > 1iff & is the smallest number such that all paths leading from state
S; back toS; have a length hat is a multiple éf

A Markov chainis periodic, iff at least one its stat®; is periodic.
A Markov chainis aperiodic, iff all its states areperiodic.

Periodic Markov Chain (revisited). A Markov chainis periodic iff it is ir-
riducible and its transition matrix ignprimitive .

In a periodic Markov chain, each state can occur only ewesteps, where is
the index of imprimitivity for the transition probability atrix.

A Markov chainis aperiodic iff its transition probability matrix igprimitive.

Probability distribution vector. A probability distribution vector or proba-
bility vector p” = (p1,...,p,) is anon-negative(p; > 0) row vector such that

Stationary probability distribution vector.  Let {X;} be aMarkov chainwith
transition probability matri®P. A stationary probability distribution vector 77
for {X;} is a probability vectorr” such that

7P =T,

(i.e., the vectorr” is the stationary point of the transformati®n)

Why stationary probability distribution vectors?  Stationary probability dis-
tribution vectorswhen they exist represent the proportion of timg; spends in
each of the states in its state space.

Question: When dostationary probability distributions vectors exist?

Why stationary probability distribution vectors? Part2. Consider the follow-
ing iterative schema:
pE)F - (p017 cee 7p0n)~

p;;r+1 = ng-
The sequencel ,pi,...,pl, ... convergesiff Markov chain {X;} has asta-
tionary probability distribution vector =7,

If it is the case,
lim ptT = lim pOTPt =T,
t—oo t—o00



Why this is all important (PageRank Revisited)

PageRankis based on a traversal of the World Wide Web gréfpww = (V, L),
whereV = {v1,...vn} is the set of all web pages, ardis the set of alkka
href ="...">hyperlinks connecting two pages.

Consider a user observing in his/her browser some web pagel’. Suppose
this web page has hyperlinks;, v;, ), . . ., (v;,v;,) on it?

Consider for a moment that user makes his/her decisionst dodber web
traversal as follows:

1. After viewing page;, the users selects as his/her next page one of the pages
Vi, - -, v5, With probability pg; > 0. (O-x—1 spsi = 1.)

2. The probabilitieg,; do not change over time, i.e., the user makes his/her
choices with the same probabiligach timethe user visits page;.

If the two properites of the user traversal holdthan the web surfing of the user
is described by a Markov chain{X,} as follows:

1. S = V: the state space of the Markov chain is the set of all web pages

2. Transitional probability matrix hgs;; > 0 for (v;,v;) € L (there is a link
from v; to v;) andp;; = 0 otherwise.

LetP = [p;;] be the transition probability matrix for the Markov chairsdgbed
above.

Supposerd = (qo1,- - -, qon) is the probability distribution specifying the prob-
ability of the user to select a starting web page, i.e.,

Pr(Xo = v;) = qoi-

Then, the probability]ﬂ», of the user electing to visit page on the first step of
the web traversal can be specified as

qu = PT‘(Xl = Uj) = Z NPT‘(Xl = Uj‘XO = Uk)'PT‘(XO = Uk) = Z ijk'gOk-
k=1 k=1

Or, in vector notation:

4 =qP.

Similarly, we obtain:

T T T T
= P=q PP=.. =P

A stationary probability distribution for this Markov chain specifie®r each
web pagev; the percentage of time a user spends visitind tis is thecore idea
behindPageRank— the more often the page is visited, the more important it is.

2Multiple hyperlinks pointing to one page are counted as giEeHink.



Question: Does the sequence of vectar$, ¢f ...,q/,... converge? l.e., is
there astationary probability distribution for the web traversal process? l.ean
we compute the eventual probability of visiting pagen a step of the traversal

Finding the Right Computation For PageRank

Existence of stationary probability distribution (the Erg odic Theorem). Let
{X:} be a Markov chain with the state spagand the probability transition matrix
P. {X,} has aunique stationary probability distribution iff

1. {X;}isirreducible (i.e., each state is reachable from each state).

2. {X,} is aperiodic.

(such Markov chains are callegigodic, hence the name of the theorem.)

Idea of PageRank. PageRanlof a web page is thpercentage of time the
user spends observing this web page over a large number of traversal steps.
As such,PageRankis stationary probability distribution of a Markov chain
describing the traversal of the World Wide Web.

Fixing the World Wide Web Traversal

The World Wide Web traversal procedure described above has the following
issues:

1. Non-stochastic transition matrix. If a web pagey; hasno out-links, p;; =
0 for anyv; € V. This means tha_,_; Npj; =0 # 1.

2. Reducible transition matrix. P is irreducible if there is a path from every
web page to every other web page. This, generally speakésgl mot be the
case.

3. Periodic transition matrix. P is periodic, if for at least one web pagec
V, there is a periodicitys > 1 with which the user can return to the page
(i.e., if the user, starting at, needs to visit a multiplicative gf pages prior
to returning back tw).

Example. Consider the three cases illustrated on Figtite

(A) Graph (A) illustrates the situation when two web pagasafd C) do not
haveout-links If a user starts on pade, (s)he will traverse to eitheh or
C on step 1, but will not be able to apply teelect an out-link and follow it
rule any further.

(B) Graph (B) illustrates the situation when the web graph tisconnected
components. Pagé€s andC are unreachable from pagAsandB and vice
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(A) (B) ©)

Figure 1: Problems with web structure. (A) "Sinks”: web pageéthout links
cause transition probability matrix to be non-stochasiiB) Disconnected web
graph causes transition probability matrix to be reducif® Periodic web pages
(each web page is visited with the period of 4) cause tramsjirobability matrix
to be periodic.

versa. The transition probability matrix for this case Wbk as follows:

0100
1 000
b= 00 01
0010

This matrix isreducible.

(C) Graph (C) illustrates a fully-connected set of pagesicivlyields anirre-
ducible transition probability matrix. However, in order to getringpageA
back to paged, the usemust visit pagesB, D andC in succession, causing
pageA to be periodic with period (four steps fromA to A). Note, that all
other pages in this graph are also periodic. The transitiobgbility matrix
is

_ o O O
o O o
O = O O
o O = O

This matrix isirreducible but periodic. P = P4,

To be able to obtain rank of a page we must construct a Markov chain for
web traversal that alleviates each of the problems above.

Fixing the Markov Chain for Web Traversal

Stochastic Matrix. To make thdransaction probability matrix stochastic we
can do one of two things:

1. Exclude all "sinks”, i.e., web pages with no links from considerati¢at
least for now). That is, define graghyww = (V, L) in which V' is the set
of all web pagesvith at least one outgoing link

What it does. The transition probability matrix now will havat least one
non-zero entry in each row. All such rows will obey the stttsity condi-
tion (values in the row add to 1).

2. Changethe traversal. Add to the traversal the following condition
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If the user is observing a page v which has no out-links,
then on the next step the user randomly selects a web page
from V to visit.

What it does. This approach replaces the row of zerogs & 0) for a page
v; with no out-links with the rowp;; = % We use random selection with
a uniform distribution to ensure that each page has equalcehaf being
visited on the next step.

Irreducible Matrix.  We need to ensure that regardless of the "real” structure of
the Web, the graph for the transition probability matrixti®egly connected. We
can do it by implementing the following change to the maindraal rule:

On each step, the user either follows one of the links on the
page, or, the user gets bored with link-by-link traversal of the
web, and instead, visits a randomly selected web page from V.

We formalize this rule, by assuming that the user will do trerfer with proba-
bility d and the latter with probability — d.

What it does. For each(v;,v;) € L, then the original probability;; = 0 is

replaced with the non-zero probability; = (1 — d) - +.

For eachw; € V, if (v;,v;) € L, the probabilityp;; is multipled byd — the
probability of choosing to follow a link. Additionally, isiincreased byl —d) - %:
the chance of getting to page from pagev; via the”l am bored” procedure.

This guaranteesto make the matri® irreducible, as the graph induced 1
will now be strongly connected

Aperiodic Matrix.  In addition to makingP irreducible, we must ensure that it
becomesperiodic.

Turns out, that the change in the main traversal rule, pexgbabove, takes care
of that. This is because, for each € V, p; # 0 in the new matrix. Therefore,
there is a non-zero probability of going from any pag#o itself in one step, which
is counter to the definition of a periodic state. Eagls aperiodic and therefore
P is primitive.

Creating Transition Probability Matrix. ~ Our final goal is to actually instantiate
the transition probability matri¥.

The original web traversal process did not specify the \sabfe;;s. However
we do need to specify them This can be done, by augmenting the traversal rule
as follows:

On each step, the user either follows one of the links on the
page, choosing each link with equal probability, or, the user
gets bored with link-by-link traversal of the web, and instead,
visits a randomly selected web page from V.

What it does. This rule allows us to define transition probabilities asoiwk:
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L a-d 5 if (vi,v;) & L;
Pij = -+ (1 — d) % . if (Ui,’Uj) c L.

Here N; is the number of out-links from pags.

Payoff
The combined traversal rules:
1. User starts at some page v € V selected randomly with equal proba-
bility.

2. On each step, the user either follows one of the links on the page,
choosing each link with equal probability, or, the user gets bored
with link-by-link traversal of the web, and instead, visits a randomly
selected web page from V.

These rules define a Markov chain with the transition prditgbmatrix P =
[pi;] defined as follows:

Pij = { Ell 1di_
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ThePageRankof a pagev; € V' is computed as

—d)-

PageRank(v;) = (hm @ PH),

T_ (1 113
whereg) = (N,...,N) .

BecauseP is stochastic irreducible and primitive, the process above con-
verges to a uniqustationary probability distribution 77

7l =7TP.

PageRank(v;) =m

Multiplying 77 by P yields:

1 1
m= ) pymt Y pgm= ) (1= d)N”Z+ > <d'ﬁ+(1—d)w~m
(vi,vy)EL (visvj)el (vi,v5)¢L (vi,v;)€L v
N N
(1—d) 1
Z(l 4): 7”—" Z d T'Zm—i- Z d-ﬁi'm:
i=1 (vivj)€EL i=1 (vi,0;)EL

3Note, that for ergodic Markov chains, the sequence conseegmrdless of the starting prob-
ability distribution .



1-d
(Ui,v]-)GL v

This forms the set of (linear) equations, which can be soireohy known man-
ner (e.g., Gaussian reduction). However, becauds very large, direct solution
methods turn out to be inefficient, and we resort to the appratton scheme:

1 1
Wg: <N,7N>

7Tk+1[j]: (1]:[d) +d- Z Niﬂ'k[’[/]

(vivy)EL "

BecauseP is stochastig irreducible andprimitive , the approximation process
converges.
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