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Link Analysis in Graphs: PageRank The Math Behind
PageRank

Matrices

A matrixA = [aij ] is calledpositive iff for all i andj, aij > 0.

Nonnegative matrices. A matrix A = [aij ] is callednon-negative iff for all i

andj, aij ≥ 0.

Eigenvalues and eigenvectors. LetA be a matrix,̄x be a vector andλ be a scalar
(number). If

Ax = λx,

thenλ is called aneigenvalueandx is called aneigenvectorof A.

The setσ(A) of eigenvaluesof A is called aspectrum of A. The spectral
radius of A, ρ(A) is

ρ(A) = max
λ∈σ(A)

(|λ|).

The circle with the radiusρ(A) centered at the origin is called thespectral circle
of A.

Theeigenvectorsof A are all the roots of thecharacteristic polynomial p(λ)
of A:

p(λ) = det(A − λI),

whereI is the unit matrix (diagonal matrix with 1 on the diagonal and0 everywhere
else).

The algebraic multiplicity of an eigenvalueλ, denotedalgmultA(λ) is the
number of times it is repeated as the root ofp(λ). λ is a simple eigenvalueif
algmult(λ) = 1.
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Perron’s Theorem for Positive Matrices. Let A = [aij ] be apositive matrix.
Let r = ρ(A) be itsspectral radius. The following statements hold:

1. r > 0. r is called thePerron root.

2. r ∈ σ(A). r is aneigenvalueof r.

3. algmultA(r) = 1. The Perron root (r) is simple.

4. There exists a positive vectorx̂ such thatAx̂ = rx̂.

5. A vectorp̂ such thatAp̂ = rp̂, p > 0, ||p||1 =
∑

|pi| = 1, is unique. (it is
called thePerron vector).

6. r is the only value on the spectral circle ofA.

Irreducible matrices. A square matrixM is said to beirreducible iff the graph
GM it induces isstrongly connected, i.e., if there is a path from every node in the
graph to every other node in the graph.

(alternatively, a square matrixM is reducible if there exists such a symmetric
permutation of rows and columnsP that transformsM into a matrix of the form

P T MP =

(

X Y

0 Z

)

,

whereX andZ are square.M is irreducible iff such a transformation is impossi-
ble.)

(A permutation matrixP is any square matrix that has exactly one1 in each row
and in each column of the matrix; all other elements of the matrix are 0s).

Question: Why are the two definitions above equivalent?

Perron-Frobenius Theorem for irreducible matrices. Let A be anon-negative
irreducible matrix. The following statements are true:

1. r = ρ(A) > 0. The spectral radius ofA is non-zero.

2. r ∈ σ(A). r is the Perron root.

3. algmultA(r) = 1. r is simple.

4. There existŝx > 0, such thatAx̂ = rx̂. (x̂ is an eigenvector ofA for the
Perron root).

5. The Perron vector ofA, defined aŝp > 0, ||p̂||1 = 1, Ap̂ = rp̂ is unique.

There are no non-negative eigenvectors forA except for positive multiples
of p̂, regardless of eigenvalue.

6. r need not be the only eigenvalue on the spectral circle ofA.
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Primitive matrices. A matrix A is primitive iff A has only one eigenvaluer =
ρ(A) on its spectral circle.

That is, inprimitive matrices , the ”largest” eigenvalue is unique.

A nonnegative irreduciblematrix that hash > 1 eigenvalues on its spectral
circle1 is said to beimprimitive andh is called itsindex of imprimitivity.

Markov Chains

Stochastic Process. A set of random variables{Xt}, t = 1 . . .∞, such that
dom(Xt) = {S1, . . . , Sn} for all t is called adiscrete finite-state stochastic pro-
cess.

Elements of the setS = {S1, . . . Sn} are calledstatesand setS is called the
state space.

Markov Chains. A Markov chain is astochastic processthat satisfies the fol-
lowing property (calledMarkov property):

Pr(Xt+1 = Si|Xt = Sit ∧ . . . ∧ S0 = Si0) = Pr(Xt+1 = Si|Xt = Sit .

TheMarkov propertyreads:

The value of the random variable X at each time is conditionally
dependent only on the value of X at the previous moment of
time.

Transition probabilities. The probability

p(t)ij = Pr(Xt+1 = Si|Xt = Sj)

is calledtransitional probability from stateSj to stateSi.

Stationary Markov Chains. A Markov Chain{Xt} is stationary if its transi-
tional probabilities do not vary over time, i.e., if for eacht, t′ > 0, and for each
pair i, j

p(t)ij = p(t′)ij = pij.

Transition probability matrix. Transition probabilitiespij of a stationary Markov
chain form ann × n matrix of transitional probabilities:

P = [pij] =













p11 p12 . . . p1n

p21 p22 . . . p2n

...
...

. ..
...

pn1 pn2 . . . pnn













1Some eigenvalues my be complex numbers.
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Irreducible Markov Chain. A Markov chainis irreducible iff each stateSi of
the state space is reachable from each stateSj .

In the terms of linear algebra, a Markov chain isirreducible iff its transition
probability matrix isirreducible .

Periodic Markov Chain. A stateSi in a Markov chain{Xt} is periodic with
the periodk > 1 iff k is the smallest number such that all paths leading from state
Si back toSi have a length hat is a multiple ofk.

A Markov chainis periodic, iff at least one its stateSi is periodic.

A Markov chainis aperiodic, iff all its states areaperiodic.

Periodic Markov Chain (revisited). A Markov chain is periodic iff it is ir-
riducible and its transition matrix isimprimitive .

In a periodic Markov chain, each state can occur only everyh steps, whereh is
the index of imprimitivity for the transition probability matrix.

A Markov chainis aperiodic iff its transition probability matrix isprimitive.

Probability distribution vector. A probability distribution vector or proba-
bility vector pT = (p1, . . . , pn) is anon-negative(pi ≥ 0) row vector such that

n
∑

i=1

pi = 1.

Stationary probability distribution vector. Let {Xt} be aMarkov chainwith
transition probability matrixP. A stationary probability distribution vector πT

for {Xt} is a probability vectorπT such that

πT
P = πT .

(i.e., the vectorπT is the stationary point of the transformationP.)

Why stationary probability distribution vectors? Stationary probability dis-
tribution vectors,when they exist, represent the proportion of timeXt spends in
each of the states in its state space.

Question: When dostationary probability distributions vectors exist?

Why stationary probability distribution vectors? Part 2. Consider the follow-
ing iterative schema:

pT
0 = (p01, . . . , p0n).

pT
t+1 = pT

t P.

The sequencepT
0 , pT

1 , . . . , pT
t , . . . convergesiff Markov chain {Xt} has asta-

tionary probability distribution vector πT .

If it is the case,
lim
t→∞

pT
t = lim

t→∞
pT
0 P

t = πT .

4



Why this is all important (PageRank Revisited)

PageRankis based on a traversal of the World Wide Web graphGWWW = 〈V,L〉,
whereV = {v1, . . . vN} is the set of all web pages, andL is the set of all<a
href="..."> hyperlinks connecting two pages.

Consider a user observing in his/her browser some web pagevi ∈ V . Suppose
this web page has hyperlinks(vi, vj1), . . . , (vi, vjs

) on it2

Consider for a moment that user makes his/her decisions about further web
traversal as follows:

1. After viewing pagevi, the users selects as his/her next page one of the pages
vj1, . . . , vjs

with probabilitypsi > 0. (
∑

k=1 spsi = 1.)

2. The probabilitiespsi do not change over time, i.e., the user makes his/her
choices with the same probabilityeach timethe user visits pagevi.

If the two properites of the user traversal hold than the web surfing of the user
is described by a Markov chain{Xt} as follows:

1. S = V : the state space of the Markov chain is the set of all web pages.

2. Transitional probability matrix haspij > 0 for (vi, vj) ∈ L (there is a link
from vi to vj) andpij = 0 otherwise.

LetP = [pij ] be the transition probability matrix for the Markov chain described
above.

SupposeqT
0 = (q01, . . . , q0N ) is the probability distribution specifying the prob-

ability of the user to select a starting web page, i.e.,

Pr(X0 = vi) = q0i.

Then, the probabilityqT
1j , of the user electing to visit pagevj on the first step of

the web traversal can be specified as

q1j = Pr(X1 = vj) =
∑

k=1

NPr(X1 = vj|X0 = vk)·Pr(X0 = vk) =
∑

k=1

Npjk·q0k.

Or, in vector notation:

qT
1 = qT

0 P.

Similarly, we obtain:

qT
t+1 = qT

t P = qT
t−1PP = . . . = qT

0 P
t+1.

A stationary probability distribution for this Markov chain specifiesfor each
web pagevi the percentage of time a user spends visiting it. This is thecore idea
behindPageRank— the more often the page is visited, the more important it is.

2Multiple hyperlinks pointing to one page are counted as one hyperlink.
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Question: Does the sequence of vectorsqT
0 , qT

1 . . . , qT
t , . . . converge? I.e., is

there astationary probability distribution for the web traversal process? I.e.,can
we compute the eventual probability of visiting pagev on a step of the traversal?

Finding the Right Computation For PageRank

Existence of stationary probability distribution (the Erg odic Theorem). Let
{Xt} be a Markov chain with the state spaceS and the probability transition matrix
P. {Xt} has aunique stationary probability distribution iff

1. {Xt} is irreducible (i.e., each state is reachable from each state).

2. {Xt} is aperiodic.

(such Markov chains are calledergodic, hence the name of the theorem.)

Idea of PageRank. PageRankof a web page is thepercentage of time the
user spends observing this web page over a large number of traversal steps.
As such,PageRank is stationary probability distribution of a Markov chain
describing the traversal of the World Wide Web.

Fixing the World Wide Web Traversal

The World Wide Web traversal procedure described above has the following
issues:

1. Non-stochastic transition matrix. If a web pagevi hasno out-links, pji =
0 for anyvj ∈ V . This means that

∑

j=1 Npji = 0 6= 1.

2. Reducible transition matrix. P is irreducible if there is a path from every
web page to every other web page. This, generally speaking, need not be the
case.

3. Periodic transition matrix. P is periodic, if for at least one web pagev ∈
V , there is a periodicityk > 1 with which the user can return to the page
(i.e., if the user, starting atv, needs to visit a multiplicative ofk pages prior
to returning back tov).

Example. Consider the three cases illustrated on Figure??.

(A) Graph (A) illustrates the situation when two web pages (A andC) do not
haveout-links. If a user starts on pageB, (s)he will traverse to eitherA or
C on step 1, but will not be able to apply theselect an out-link and follow it
rule any further.

(B) Graph (B) illustrates the situation when the web graph has disconnected
components. PagesC andC are unreachable from pagesA andB and vice
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Figure 1: Problems with web structure. (A) ”Sinks”: web pages without links
cause transition probability matrix to be non-stochastic.(B) Disconnected web
graph causes transition probability matrix to be reducible. (C) Periodic web pages
(each web page is visited with the period of 4) cause transition probability matrix
to be periodic.

versa. The transition probability matrix for this case willlook as follows:

P =











0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0











.

This matrix isreducible.

(C) Graph (C) illustrates a fully-connected set of pages, which yields anirre-
ducible transition probability matrix. However, in order to get from pageA
back to pageA, the usermust visit pagesB, D andC in succession, causing
pageA to be periodic with period4 (four steps fromA to A). Note, that all
other pages in this graph are also periodic. The transition probability matrix
is

P =











0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0











.

This matrix isirreduciblebut periodic. P = P
4.

To be able to obtain rank of a page we must construct a Markov chain for
web traversal that alleviates each of the problems above.

Fixing the Markov Chain for Web Traversal

Stochastic Matrix. To make thetransaction probability matrix stochastic we
can do one of two things:

1. Exclude all ”sinks”, i.e., web pages with no links from consideration (at
least for now). That is, define graphGWWW = 〈V,L〉 in whichV is the set
of all web pageswith at least one outgoing link.

What it does. The transition probability matrix now will haveat least one
non-zero entry in each row. All such rows will obey the stochastisity condi-
tion (values in the row add to 1).

2. Changethe traversal. Add to the traversal the following condition:
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If the user is observing a page v which has no out-links,
then on the next step the user randomly selects a web page
from V to visit.

What it does. This approach replaces the row of zeroes (pij = 0) for a page
vi with no out-links with the rowpij = 1

N
. We use random selection with

a uniform distribution to ensure that each page has equal chance of being
visited on the next step.

Irreducible Matrix. We need to ensure that regardless of the ”real” structure of
the Web, the graph for the transition probability matrix is strongly connected. We
can do it by implementing the following change to the main traversal rule:

On each step, the user either follows one of the links on the
page, or, the user gets bored with link-by-link traversal of the
web, and instead, visits a randomly selected web page from V .

We formalize this rule, by assuming that the user will do the former with proba-
bility d and the latter with probability1 − d.

What it does. For each(vi, vj) 6∈ L, then the original probabilitypij = 0 is
replaced with the non-zero probabilitypij = (1 − d) · 1

N
.

For eachvi ∈ V , if (vi, vj) ∈ L, the probabilitypij is multipled byd — the
probability of choosing to follow a link. Additionally, it is increased by(1−d) · 1

N
:

the chance of getting to pagevj from pagevi via the”I am bored” procedure.

This guaranteesto make the matrixP irreducible , as the graph induced byP
will now be strongly connected.

Aperiodic Matrix. In addition to makingP irreducible, we must ensure that it
becomesaperiodic.

Turns out, that the change in the main traversal rule, proposed above, takes care
of that. This is because, for eachvi ∈ V , pii 6= 0 in the new matrix. Therefore,
there is a non-zero probability of going from any pagevi to itself in one step, which
is counter to the definition of a periodic state. Eachvi is aperiodic and therefore
P is primitive.

Creating Transition Probability Matrix. Our final goal is to actually instantiate
the transition probability matrixP.

The original web traversal process did not specify the values of pijs. However
we do need to specify them. This can be done, by augmenting the traversal rule
as follows:

On each step, the user either follows one of the links on the
page, choosing each link with equal probability, or, the user
gets bored with link-by-link traversal of the web, and instead,
visits a randomly selected web page from V .

What it does. This rule allows us to define transition probabilities as follows:
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pij =

{

(1 − d) · 1
N

: if (vi, vj) 6∈ L;
d · 1

Ni
+ (1 − d) · 1

N
: if (vi, vj) ∈ L.

HereNi is the number of out-links from pagevi.

Payoff

The combined traversal rules:

1. User starts at some page v ∈ V selected randomly with equal proba-
bility.

2. On each step, the user either follows one of the links on the page,
choosing each link with equal probability, or, the user gets bored
with link-by-link traversal of the web, and instead, visits a randomly
selected web page from V .

These rules define a Markov chain with the transition probability matrix P =
[pij ] defined as follows:

pij =

{

(1 − d) · 1
N

: if (vi, vj) 6∈ L;
d · 1

Ni
+ (1 − d) · 1

N
: if (vi, vj) ∈ L.

ThePageRankof a pagevj ∈ V is computed as

PageRank(vj) = ( lim
t→∞

qT
0 P

t)[j],

whereqT
0 =

(

1
N

, . . . , 1
N

)

3.

BecauseP is stochastic, irreducible and primitive , the process above con-
verges to a uniquestationary probability distribution πT :

πT = πT
P.

PageRank(vj) = πT
j .

Multiplying πT by P yields:

πj =
∑

(vi,vj)6∈L

pij·πi+
∑

(vi,vj)∈L

pij·πi =
∑

(vi,vj)6∈L

(1−d)·
1

N
·πi+

∑

(vi,vj)∈L

(

d ·
1

Ni
+ (1 − d) ·

1

N
· πi

)

=

·
N
∑

i=1

(1−d) ·
1

N
·πi +

∑

(vi,vj)∈L

d ·
1

Ni
·πi =

(1 − d)

N
·

N
∑

i=1

πi +
∑

(vi,vj)∈L

d ·
1

Ni
·πi =

3Note, that for ergodic Markov chains, the sequence converges regardless of the starting prob-
ability distribution .
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(1 − d)

N
+ d ·

∑

(vi,vj)∈L

1

Ni

· πi.

This forms the set of (linear) equations, which can be solvedin any known man-
ner (e.g., Gaussian reduction). However, becauseN is very large, direct solution
methods turn out to be inefficient, and we resort to the approximation scheme:

πT
0 =

(

1

N
, . . . ,

1

N

)

πk+1[j] =
(1 − d)

N
+ d ·

∑

(vi,vj)∈L

1

Ni

· πk[i].

BecauseP is stochastic, irreducible andprimitive , the approximation process
converges.
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