
. .
Cal Poly CSC 466: Knowledge Discovery from Data Alexander Dekhtyar
. .

Data Mining:
Mining Association Rules

Definitions

Market Baskets. Consider a set I = {i1, . . . , im}. We call the elements of I, items.
A market basket is any subset S of I: S ⊂ I.
A market basket dataset or a set of market basket transactions (or transactions for short) is a
collection T = {t1, . . . , tn} of market baskets.
A subset T ′ = {t′1, . . . , t

′
k} ⊆ T of a market basket dataset is called a tidset. Without loss of generality,

we allow the notation ti ∈ T describing a single market basket in the dataset T to be viewed both as a
unique identifier of that market basket (a tid, or - essentially - a receipt Id), and the market basket itself,
i.e., the items that comprise it.

Association Rules. Let I be a set of items. An association rule is an implication of the form

X −→ Y,

where X ⊂ I, Y ⊂ I and X ∩ Y = ∅.
We refer to X and Y as itemsets.

Meaning of Association Rules. The association rule

X −→ Y

is a stand-in for an English statement

Whenever a market basket contains all items from the itemset X, it tends to contain items

from the itemset Y .

The statement above is not categorical — the relationship between the left-hand side itemset X and the
right-hand side itemset Y is ”tends to”.
Our first goal is to determine the degree of the strength of the relationship between X and Y in an
association rule X −→ Y .
Turns out, this degree can be measured.

Support and confidence for association rules. Let I be a set of items and T = {t1, . . . , tn} be a
market basket dataset. Let R : X −→ Y be an association rule.
The support of R in the dataset T is the percentage of market baskets ti ∈ T which contain X ∪ Y :

supportT (X −→ Y) =
|{ti ∈ T |X ∪ Y ⊆ ti}|

n
.

The confidence of R in the dataset T is the percentage of market baskets ti ∈ T that contain X, which
also contain Y :

confidenceT (X −→ Y) =
|{ti ∈ T |X ∪ Y ⊆ ti}|

|{tj ∈ T |X ⊆ tj}|
.

1

Also, given an itemset X, its support is the percentage of market baskets ti ∈ T that contain it:

supportT (X) =
|{ti ∈ T |X ⊆ ti}|

n
.

• Support of an association rule determines its coverage: how many market baskets (or what percent-
age of all market baskets) the rule affects. We want to find association rules with high support,
because such rules will be about transactions/market baskets that commonly occur.

• Confidence of an association rule determines its predictability, i.e., how often it occurs among the
affected market baskets. We want to find association rules with high confidence, because such rules
represent strong relationships between items.

Assertion of association rules. Given an association rule X −→ Y , the strength of this association
can be determined by support (X −→ Y) and confidence(X −→ Y).
If we are satisfied with the values of the support and confidence for X −→ Y , we say that we can assert

the association rule X −→ Y .

Association Rules mining problem. Given a set of items I,a market basket dataset T and two
numbers: minSup and minConf, find all association rules that occur with the support of at least minSup
and confidence of at least minConf for T .

Note: The problem of mining association rules requires the return of all association rules found, i.e.,
it is complete. There are variations on the theme, which allow for return of a subset of all discovered
association rules.

Brute-force solution for association rules mining problem. There is a simple brute-force algo-
rithm for mining association rules:

Algrithm ARM_BRUTE_FORCE(T, I, minSup, minConf)

for each X such that X is a subset of I

for each Y such that Y is a subset of I

if Y and X are disjoint then

compute s := support(T, X->Y);

compute c := confidence(T, X-> Y);

if (s > minSup) AND (c > minConf) then output(X->Y);

fi

end // for

end //for

I hasm elements, hence the outer loop has 2m iterations. GivenX ⊂ I, there are 2m−|X| choices to select
Y , which, in average, gives us 2

m

2 iterations of the inner loop. Assuming that computations of support()
and confidence() functions require polynomial time1 in the size of the input (which is |T |+ |I| = n+m),
we estimate the algorithmic complexity of ARM BRUTE FORCE as

O(21.5m · P (n+m)),

where P (x) is a polynomial function.
This running time has two properties:

• It is exponential in the number of unique items. Typical Association Rule Mining problems
have large inventories, i.e., sets of available items (think a grocery store!). This makes the brute
force algorithm an unacceptable choice in production.

1As we will see below, they, indeed, do.

2

• It is polynomial in the number of transactions. When the number of transactions is large
enough so that all transactions cannot fit main memory, T is stored on disk, and the body of the
inner loop entails a full scan of the set of transactions T from disk. This is a costly operation, and
the brute force algorithm as described above implies O(2m) full scans - which is also unacceptable.

However, it is not very difficult to significantly improve the process of finding association rules.

Apriori Algorithm

Apriori Algorithm [1] was the first efficient algorithm for mining association rules.
Apriori Algorithm is an algorithm for discovery of frequent itemsets in a dataset.

Frequent itemsets. Let I be a set of items and T be a market basket dataset. Given a minimum
support number minSup, an itemset X ⊆ I is a frequent itemset in T , iff supportT (X) > minSup.

The Apriori Principle. (also known as Downward Closure Property). This principle establishes
the main driving force behind the Apriori algorithm.

If X is a frequent itemset in T , then its every non-empty subset is also a frequent
itemset in T .

Why is this useful? Any frequent itemset discovery algorithm is essentially a specialized search algorithm
over the space of all itemsets. Apriori principle allows us to prune potentially a lot of itemsets from
consideration: if a set X is known to NOT be a frequent itemset, then any superset of X will not be
frequent!
Idea behind algorithm. Level-wise search: search for frequent itemsets by the itemset size: first find
all frequent itemsets of size 1, then — all frequent itemsets of size 2, then — all frequent itemsets of size
3, and so on.
The algorithm. The Apriori algorithm consists of two parts. Figure 1 shows the pseudocode for
the algorithm itself. The algorithm, on each step calls candidateGen() function. The pseudocode of this
function is shown in Figure 2.

Function candidateGen(). On step i of its execution, the Apriori algorithm discovers frequent
itemsets of size i. On each step starting with step 2, function candidateGen() is called. On step i it takes
as input the list of frequent itemsets of size i − 1 computed on previous step and outputs the list of
candidate frequent itemsets of size i. The Apriori algorithm then checks whether the support for each
itemset returned by candidateGen() exceeds minSup.
candidateGen() function works as follows. On step k, it receives as input a list Fk−1 of frequent itemsets of
size k − 1. It considers all itemsets of size k which can be constructed as unions of pairs of itemsets from
Fk−1 (join step). candidateGen() function then checks if all subsets of size i− 1 of such unions belong to
Fk−1 (pruning step). Itemsets that pass this check are added to the list of candidate frequent itemsets
that is eventually returned.

Properties of Apriori Algorithm

Worst-case complexity. Apriori algorithm has O(2N) (where N is the size of the input) algorithmic
complexity. This is because in the worst case scenario, all 2N possible itemsets are frequent and have
to be explored.
The heuristic efficiency of the Apriori algorithm comes from the fact that typically observed market
basket data is sparse. This means that, in practice, relatively few itemsets, especially large itemsets, will
be frequent.

3

Algorithm Apriori(T , I, minSup)
begin
F1 := {{i}|i ∈ I; supportT ({i}) ≥ minSup}; //first pass

k := 2;
repeat //main loop

Ck = candidateGen(Fk−1, k− 1); //candidate frequent itemsets

foreach c ∈ Ck do count[c] := 0; //initialize counts

foreach t ∈ T do
foreach c ∈ Ck do

if c ⊆ t then count[c] + +;
endfor

endfor
Fk = {c ∈ Ck|

count[c]
n

≥ minSup}; //filter out all itemsets with insufficient support

k := k + 1;
until Fk−1 = ∅;
return F := ∪k−1

i=1 Fi;
end

Figure 1: Apriori Algorithm for mining association rules.

Function candidateGen(F,k)
begin
C := ∅;
foreach f1, f2 ∈ F s.t. |f1| = |f2| = k do

if |f1 ∪ f2| == |f1|+ 1 then
c := f1 ∪ f2; // join step

flag := true;
foreach s ⊆ c s.t. |s| = |c| − 1 do // pruning step

if s 6∈ F then flag := false;
endfor
if flag == true then C := C ∪ c;

endif
endfor
return C;

end

Figure 2: Generation of candidate frequent itemsets.

4

Data Complexity. What makes Apriori an excellent data mining algorithm is its data complexity2.
The algorithm uses min(K + 1,m) scans of the input dataset, where K is the size of the largest frequent
itemset.

Memory Footprint. Another important property of Apriori is its small memory footprint. Each
market basket t ∈ T is analyzed independently from others, so, only a small number of market baskets
needs to be kept in main memory at each moment of time.

Formally, the data complexity of the Apriori algorithm is O(1).

Level-wise search. Each iteration of the Apriori produces frequent itemsets of specific size. If larger
frequent itemsets are not needed, the algorithm can stop after any iteration.

Finding Association Rules

Apriori Algorithm discovers frequent itemsets in the market basket data. A collection of frequent
itemsets can be be extended to a collection of association rules using Algorithm GenRules described in
Figure 3.

Idea. Let f be a frequent itemset of size greater than 1. Given f , we will consider all possible association
rules of the form

(f − α) −→ α for all α ⊂ f.

For each such rule, we will compute confidenceT ((f −α) −→ α) and compare it to minConf number given
to us as input.

Algorithm genRules. This algorithm proceeds similarly to the Apriori algorithm. For each frequent
itemset, first, genRules generates all rules with a single item on the right, and finds among them those,
that have confidence higher than minConf.

After that, it uses candidateGen function to generate candidate rules more items on the right. For each
candidate rule returned by candidateGen, the algorithm computes its confidence and determines if the rule
should be reported.

Data Formats for Mining Association Rules

Market Baskets as Sparse Vectors

In a typical scenario, given a list of items I and a list of market baskets/transations T = {t1, . . . , tn},

|I| >> |ti|.

That is, individual market baskets are relatively small, when compared to the set of all possible items.

Dense Vector representation. If I is not large, T can be represented as a set of dense binary

vectors:

2Data complexity of a problem is the number of Input/Output operations necessary to complete solve the problem. This
way of measuring performance of algorithms comes from database systems, where data complexity, rather than algorithmic
complexity is used to estimate the quality of query processing algorithms.

5

Algorithm genRules(F , minConf) // F - frequent itemsets

begin
foreach f ∈ F s.t. |f | = k ≥ 2 do

H1 = ∅;
foreach s ∈ f do

if confidenceT (f − {s} −→ {s}) ≥ minConf then
H1 := H1 ∪ {f − {s} −→ {s}};

endfor
apGenRules(f ,H1);

endfor
end

Procedure apGenRules(f , Hm)
begin
if (k > m+ 1) AND H 6= ∅ then

Hm+1 := candidateGen(Hm,m);
foreach h ∈ Hm+1 do

confidence := count(f)
count(f−h) ;

if confidence ≥ minConf then
output (f − h) −→ h; //new rule found

else
Hm+1 := Hm+1 − {h}

endfor
apGenRules(f ,Hm+1)
endif

end

Figure 3: Generation of association rules from frequent itemsets.

0 1 0 0 0 1 0 1

0 0 0 1 1 1 0 1

0 1 0 1 1 1 0 1

1 1 0 0 0 1 0 1

0 1 0 0 0 0 0 1

1 1 0 0 0 0 1 0

In the example above, |I| = 8. Each element ti ∈ T is represented as a binary vector of size 8. E.g.,
the first vector indicates a market basket {i2, i6, i8}.

Advantages:

• Regular representation;

• Suitable for relational databases.

Disadvantages:

• Inefficient use of space.

Sparse Vector representation. If I is large, dense vectors will contain way too many zeroes and, will
require significant overhead when read and processed. Sparse vector representation is used in this
case. E.g. the dataset above can be represented as follows:

2,6,8

4,5,6,8

2,4,5,6,8

6

1,2,6,8

2,8

1,2,7

Here, each vector contains information about the non-empty columns in it.
Advantages:

• Efficient use of space.

• Universality.

• Relatively straightforward algorithms for simple vector operations.

Disadvantages:

• Not very suitable for relational databases.

• Variable-length records.

Relational Data as Market Baskets

Market Baskets are binary vectors. A lot of data that could use association rules mining is relational in
nature, i.e., each ”item” can have more than one value.

Example. Let I = {CSC365, CSC366, CSC480, CSC437, CSC408, CSC466, CSC481, CSC409}, a list
of eight Computer Science/Software Engineering electives at Cal Poly.

In a simple market basket dataset, each market basket is a student record indicating which electives
the student took. Consider, for example, the following six student records:

Itemset Binary Vector

{CSC365, CSC366, CSC480} 1,1,1,0,0,0,0,0

{CSC408, CSC409} 0,0,0,0,1,0,0,1

{CSC365, CSC366, CSC408, CSC409} 1,1,0,0,1,0,0,1

{CSC480, CSC437, CSC481} 0,0,1,1,0,0,1,0

{CSC480, CSC481} 0,0,1,0,0,0,1,0

{CSC365, CSC480, CSC481} 1,0,1,0,0,0,1,0

Using this dataset, we can find patterns in classes students choose to take. However, we won’t find any
patterns concerning student performance in the classes

This dataset, however, can be expanded to specify student grades in each course they take. Assume for
a moment, that a student can have one of the following grades: A,B,C,F in the class. We can then consider
the following relational database snapshot of the data above:

Student CSC365 CSC366 CSC480 CSC437 CSC408 CSC466 CSC481 CSC409
1 A B B NULL NULL NULL NULL NULL

2 NULL NULL NULL NULL A NULL NULL A
3 C C NULL NULL B NULL NULL B
4 NULL NULL B C NULL NULL C NULL

5 NULL NULL A NULL NULL NULL A NULL

6 C NULL B NULL NULL NULL B NULL

We may be interested in finding association rules of the sort:

Students with a C in CSC365 tended to take CSC 408 and earn B in it.

7

Converting Relational Datasets into Market Basket datasets. Let R = (A1, . . . As) be the rela-
tional schema (w.o. the primary key). For simplicity, let dom(Ai) = {ai1, . . . , ail}. Given R and a set
of tuples T = {t1, . . . , tn} over schema R, we construct a set of items IR and a market basket dataset
T̂ = {t̂1, . . . , t̂n} as follows:

• The set of items IR = {(A1, a11), . . . , (A1, a1l), (A2, a21), . . . , (A2, a2l), . . . , (As, asl)}.

That is, each item in the set of items IR a name-value pair from the relational schema R.

• A tuple t = (b1, b2, . . . , bs) is converted into a binary vector
t̂ = (x11, . . . , x1l, x21, . . . , x2l, . . . , xs1, . . . xsl),
where, x1b1 = x2b2 = . . . xsbs = 1 and all other xij = 0.

Apriori Algorithm for Relational Datasets. Once we convert relational data to market basket data,
we can apply a modified version of the Apriori algorithm to find frequent itemsets. The following
modification needs to be made to the candidateGen() function:

• When creating the list of candidate frequent itemsets for the join stage of the Apriori Algorithm,
generate only the itemsets that have no more than one column for each original attribute
A1, . . . , As of the relational dataset.

Example. The dataset of student transcripts described above can be transformed to a market basket
dataset as follows.

• The set I of items is:

I = {CSC365A,CSC365B,CSC365C,CSC365F,

CSC366A,CSC366B,CSC366C,CSC366F,

CSC480A,CSC480B,CSC480C,CSC480F,

CSC437A,CSC437B,CSC437C,CSC437F,

CSC408A,CSC408B,CSC408C,CSC408F,

CSC466A,CSC466B,CSC466C,CSC466F,

CSC481A,CSC481B,CSC481C,CSC481F,

CSC409A,CSC409B,CSC409C,CSC409F}

• The six transcript fragments described above are transformed into the following six binary vectors
(for simplicity, we group columns for the same course):

365 366 480 437 408 466 481 409

1,0,0,0, 0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0

0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0

0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0

0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,0

0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0

0,0,1,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0

• In the sparse vector notation, the transformed dataset is represented as follows:

1,6,10

17,29

3,6,18,30

8

10,15,27

9,25

3,10,26

(note, that now the sparse dataset representation really takes significantly less space)

Dealing with numeric parameters. The transformation above applies to the situations when all
attributes in the relational dataset are categorical. When some attributes are numerical, and come with
large domains (or are continuous), these domains need to be discretized:

• If the domain of an attribute A is continuous (or a large discrete numeric), the discretization
process involves selection of a small number of value ranges and replacement of the attribute A

in the dataset with a new attribute Ad, whose value is the discretized version of A.

Example. Consider, for example a relational domain,

R = (Y earsWithCompany, Salary, Position,Department),

which specifies four attributes for employees of some company. Suppose that Y earsWithCompany ranges
from 0 to 30, and Salary ranges from $20,000 to $110,000. Also, let’s assume that the domain of Position is
{Assistant, Associate, Manager, Senior Manager, Head} and the domain of Department is {Sales, Production,
HR, Analytics}. Consider the following small dataset:

YearsWithCompany Salary Position Department

5 70,000 Manager Sales
23 105,000 Head HR
2 36,000 Assistant Production
3 60,000 Associate Analytics
16 85,000 Senior Manager Production

Before converting it into a market basket dataset, we first, discretize YearsWithCompany and
Salary :

YearsWithComapny Range Discretized Value
0 — 3 newbie
4 — 10 average

11 — 20 veteran
20 — 30 dedicated

Salary Range Discretized Value
20,000 — 39,999 low
40,000 — 64,999 medium-low
65,000 — 84,999 medium-high
85,000 — 110,000 high

We can now, replace these two attributes in the dataset with YWCDiscr and SalaryDiscr:
YWCDiscr SalaryDiscr Position Department

average medium-high Manager Sales
dedicated high Head HR
newbie low Assistant Production
newbie medium-low Associate Analytics
veteran high Senior Manager Production

This dataset contains four categorical attributes and can be transformed into amarket basket dataset
as described above.

Discretizing categorical attributes. Analysts may choose to discretize certain categorical attributes
to provide better/simpler views of their data.

For example, we could choose to merge A and B grades into a single attribute for each course. This
would reduce the size of the dataset (going from 32 columns to 24) and would potentially uncover new
association rules.

9

References

[1] Agrawal R, Imielinski T, Swami AN. ”Mining Association Rules between Sets of Items in Large
Databases.” in Proc. ACM SIGMOD. June 1993, 22(2):207-16.

10

